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ABSTRACT Wildlife agencies are generally tasked with managing and conserving species at state and local
levels simultaneously. Thus, it is necessary for wildlife agencies to understand basic ecological processes of a
given species at multiple scales to aid decision making at commensurately varied spatial and behavioral
scales. Mountain lions (Puma concolor) occur throughout California, USA, and are at the center of a variety
of management and conservation issues. For example, they are genetically and demographically at risk in 1
region yet apparently stable and negatively affecting endangered species in another. Currently, no formal
plan exists for mountain lions in California to deal with these diverse scenarios involving issues of local
mountain lion population viability and problems related to predation of endangered species. To facilitate
development of a state-wide management and conservation plan, we quantified habitat selection by
mountain lions at 2 spatial scales across the range of environmental conditions in which the species is found
in California. Our analyses used location data from individuals (z=263) collared across the state from
2001-2019. At the home range scale, mountain lions selected habitat to prioritize meeting energetic
demands. At the within home range scale, mountain lions avoided areas of human activity. Further, our
analyses revealed 165,350-170,085 km?, depending on season, of suitable mountain lion habitat in
California. Fifty percent of the suitable habitat was on unprotected lands and thus vulnerable to devel-
opment. These habitat selection models will help in the development of a state-wide conservation and
management plan for mountain lions in California by guiding mountain lion population monitoring
through time, prioritization of habitat to be conserved for maintaining demographic connectivity and gene
flow, and efforts to mediate mountain lion-prey interactions. Our work and application area will help with
wildlife policy and management decisions related to depredation problems at the local scale and issues of

habitat connectivity at the statewide scale. © 2019 The Wildlife Society.
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Wildlife managers are mandated by laws and regulations to
ensure species viability across large jurisdictions (e.g., states,
provinces, countries; Robinson et al. 2016, Ryder 2018).
Understanding factors associated with habitat selection is key
in helping wildlife managers ensure species persistence across
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large areas and can also facilitate development of strategies to
deal with localized issues (Morrison and Matthewson 2015).
Thus, quantifying habitat selection patterns provides the
primary explanatory variable for managing wildlife at mul-
tiple spatial scales (Zeller et al. 2017).

Mountain lions (Puma concolor) are the most widely dis-
tributed mammal species in the Western Hemisphere
(Hornocker and Negri 2010). In the western United States,
where mountain lions are continuously distributed (Pierce
and Bleich 2003), most states classify them as game animals
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and manage populations to provide hunting and other rec-
reational opportunities and mitigate perceived or actual
negative effects on other game species (i.e., ungulates) and
livestock (Mattson 2014). In contrast, mountain lions in
California, USA, are classified as a specially protected
mammal (California Fish and Game Commission 2018), in
which take is permitted only if a depredation permit is is-
sued from California Department of Fish and Wildlife
(CDFW) to take a specific mountain lion that is killing
livestock or pets, to preserve public safety, or to protect state
and federally listed bighorn sheep (Ovis canadensis).

Although mountain lions are not threatened or endangered
in California, some local populations are currently at risk of
extirpation because of habitat loss (Benson et al. 2016) and
continued land-use change will put additional populations at
risk (Gustafson et al. 2019). In some areas of the state,
mountain lions negatively affect large ungulates (Hudgens
et al. 2016, Conner et al. 2018). Overall, there is a general lack
of understanding about mountain lion abundance and pop-
ulation trends statewide and a need for detailed information on
distribution and habitat selection. Although mountain lions
are widespread in California (Pierce et al. 1999, Wilmers et al.
2013, Vickers et al. 2015, McClanahan et al. 2017, Dellinger
et al. 2018) and lack one of the most common mortality
sources that they experience elsewhere (i.., regulated hunting),
little is known about them outside of a few small isolated
populations adjacent to major human population centers
(Wilmers et al. 2013, Vickers et al. 2015, Benson et al. 2016).
Thus, policy makers and wildlife biologists lack the basic in-
formation needed for science-based management and con-
servation of mountain lions across California.

Some management and conservation challenges occur
throughout the state, such as livestock depredation, but
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given the size (423,971 km?), diversity of ecoregions
(Fig. 1), and diversity of human development (i.e., 8 of the
50 most populous cities in the country but with 50% of its
land in public ownership; U.S. Geological Survey 2017), a
range of area-specific management and conservation chal-
lenges exist. For example, in southern California, mountain
lions have become genetically isolated because of human
development and persist in a highly fragmented landscape
(Vickers et al. 2015, Benson et al. 2016). In contrast,
mountain lions in the eastern Sierra Nevada mountains
occur in a largely undeveloped landscape but are of man-
agement concern because of their predation upon federally
listed Sierra Nevada bighorn sheep (Owvis canadensis sierrae;
Johnson et al. 2013).

Recognizing the challenges facing policy makers and
wildlife biologists, in 2014 CDFW began a project to esti-
mate the abundance of mountain lions statewide and develop
region-specific long-term monitoring approaches, with the
goal of producing a state-wide management and conservation
plan. Previous work by Torres et al. (1996) attempted to
demonstrate distribution and quality of mountain lion habitat
in California in a habitat suitability framework by ranking
habitat characteristics based on expert opinion. Since this
time, raw data have been accumulated to assess mountain lion
habitat selection patterns directly and with more modern
spatial and statistical techniques (Wilmers et al. 2013, Zeller
et al. 2017). In support of this effort, our objectives were to
use mountain lion location data obtained from 13 areas across
California (Table 1) to develop multi-scale seasonal resource
selection functions. We evaluated patterns of habitat se-
lection across California and determine amount, distribution,
and status (i.e., public vs. private land) of suitable mountain
lion habitat across California to assist in prioritizing habitat
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Figure 1. Distribution of home ranges of mountain lions radio-collared in the various project areas that made up the dataset for this study to understand
habitat selection of mountain lions in California, USA, 2001-2019. Home ranges are overlaid on a map of the A) ecoregions that make up the state of
California and more generally on a map of B) land cover types included in the analyses.

The Journal of Wildlife Management



Table 1. Summary of location data for radio-collared mountain lions by project area in California, USA, from 2001-2019.

Number of Number of
Project area animals Males  Females locations Platform Date collected
Sutter County 1 0 1 764 Globalstar Jun—Dec 2017
Napa and Sonoma counties 4 1 3 8,445 Iridium 16 Oct-17 Nov
Six Rivers National Forest 7 4 3 11,824 Iridium 17 Feb-19 Aug
Mendocino National Forest 7 2 5 13,411 Globalstar 10 Jun—12 Dec
Plumas National Forest 7 3 4 9,767 Globalstar, Iridium 16 May-17 Nov
Sierra National Forest 8 3 5 22,143 Globalstar 14 Apr-17 Sep
Central Coast 9 4 5 14,329 Iridium 18 Jan—-19 Aug
Siskiyou County 9 5 4 24,605 Iridium 17 Jan-18 Jul
Tahoe and El Dorado National Forests 12 6 6 17,937 Argos 2 Jan-5 May
Modoc National Forest 14 9 5 39,769 Iridium 16 Feb-18 Jun
Santa Cruz Mountains 49 28 21 300,104 GSM, Globalstar 9 Mar-17 Oct
Mono and Inyo Counties 54 23 31 77,137 Argos, Globalstar, Iridium 2 Mar-19 Aug
Santa Ana and Peninsular mountains 82 43 39 303,265 Argos, Globalstar, Iridium 1 Jan-16 Dec
Total 263 135 128 843,500

conservation. We predicted that mountain lion habitat se-
lection patterns would demonstrate that much of California is
suitable mountain lion habitat and that habitat selection
patterns would be consistent across the state.

STUDY AREA

We collected location data from 2001-2019 on an assort-
ment of private, county, regional, state, federal, and tribal
lands across the state of California, which has an area of
423,970 km? with 8 recognized ecoregions (Sawyer et al.
2009; Fig. 1). Across the areas used by mountain lions, there
was substantial variability in the level of human use and
development (U.S. Census Bureau 2017; e.g., wilderness
areas and locales immediately adjacent to and within large
urban population centers). Further, the geographic extent of
the dataset represented the diversity of ecoregions, which
ranged from Mojave Desert conditions in the Peninsular
Range of southern California, to temperate rain forests in
the northwestern part of the state. The various ecoregions
encompassed large gradients in physical attributes such as
elevation (from sea level to ~4,000m; U.S. Geological
Survey 2017), seasonal precipitation (13.1-140.9 cm), and
temperature (—15-45°C). Lastly, seasonality varied greatly
across the state. Interior areas of California experienced
cool summers and cold winters with large amounts of
precipitation in the form of snow. Conversely, coastal
areas experienced warm summers and cool winters with
precipitation in the form of rain (Sawyer et al. 2009).
This range of seasonality influenced movement patterns
of mule deer (Odocoileus hemionus) and black-tailed deer
(O. h. columbianus), the primary prey of mountain lions in
California, by inducing long distance migrations in interior
areas of the state and local elevational migrations in more
coastal areas (Loft and Bleich 2014, Bose et al. 2017).

METHODS

Each of the project areas identified (Table 1) represents an
independent study with objectives unique to that project.
Therefore, our efforts represent a compilation of the various
independently collected datasets. From 2001 to 2019, we
captured subadult and adult mountain lions using a com-

bination of cage traps and trained hounds (Table 1). Upon

capture, we anesthetized mountain lions with Telazol®
(tiletamine HCI and zolazepam HCI; Fort Dodge Animal
Health, Fort Dodge, IA, USA) or a combination of
ketamine and medetomidine or xylazine. Given that
CDFW is the state agency in California with wildlife
trustee authority, captures led by CDFW personnel were
conducted with the approval of a CDFW wildlife veter-
inarian and under the scope of CDFW’s animal care and use
policy (CDFW Operations Manual Policy 149). Captures
led by non-CDFW personnel (e.g., universities or
non-governmental organizations) were conducted under
the approval of CDFW (permit numbers SC-011968,
SC-007303, SC-002730, SC-009875, and SC-013416) or
an affiliated animal care and use committee (University of
California, Santa Cruz, protocol number Wilmc1101;
University of California, Davis, protocol number 17233).
Captured animals weighing >27.5 kg received global posi-
tioning system (GPS) radio-collars. Global positioning
system-collar platform (i.e., GSM, Globalstar, Iridium;
Lotek, New Market, ON, Canada; Telonics, Mesa, AZ,
USA; Advanced Telemetry Systems, Ishanti, MN, USA;
Vectronics Aerospace, Berlin, Germany), and functionality
varied within and among specific project areas. Fix rates
varied from 4-24 locations/day (Table 1). Metrics of spatial
accuracy and fix rate success of GPS locations were not
available for all project areas but ranged between 75% and
97%. The lowest reported location accuracy for any of the
project areas was 100 m.

Initially we collated data from 270 individual animals. We
excluded data from animals exhibiting space use incon-
sistent with an established home range (i.e., not demon-
strating a central area of use, dispersing) and data from
animals with too few locations to determine if they had an
established home range (Dellinger et al. 2013). After ap-
plying these filters, our dataset consisted of 843,500 loca-
tions (X = 3,207 locations/individual or 420 days/individual,
range = 61-8,656 locations/individual) for 263 unique in-
dividuals (128 females and 135 males). Although most en-
vironmental conditions where mountain lions occur in
California were represented, the GPS data and number of
individuals represented were unevenly distributed across the
state’s ecoregions (Fig. 1; Table 1).
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Data Analysis
We developed resource selection functions (RSF) to eluci-
date habitat selection patterns of mountain lions at the
home range and within home range scales, which corre-
spond to Johnson’s (1980) second and third orders of se-
lection, respectively. We analyzed home range scale resource
selection in a use-availability framework (Manly et al. 2002)
wherein we defined use by 95% adaptive nearest-neighbor
convex hull (a-NNCH; Getz et al. 2007) home ranges for
each radio-collared mountain lion and available by the cir-
cular home ranges distributed across California. More spe-
cifically, home range scale habitat selection can be defined as
the factors influencing where mountain lions select to es-
tablish a home range, whereas within home range scale
habitat selection pertains to the usage of various habitat
components within the home range (Johnson 1980).
Practically speaking, home range scale habitat selection can
elucidate where mountain lions are likely to occur on the
landscape in general, whereas within home range scale
habitat selection can demonstrate what locales are likely to
be used more or less than others in areas where mountain
lions occur. For the home range scale analyses, we calculated
95% a-NNCH home ranges for each individual. We used
a-NNCHs over other home range estimation methods to
aid in identifying home range boundaries (i.e., not wanting
to overestimate areas used by individuals); and we used 95%
a-NNCHs rather than 100% a-NNCHs to exclude any
extra-territorial forays that might include any habitat out-
side of the normal activity patterns of radio-collared in-
dividuals (Burdett et al. 2010, Elbroch and Wittmer 2012).
We then sampled available resources at the home range
scale by randomly generating 2,000 regularly spaced circular
home ranges across California that were equal in area to the
average mountain lion 95% a-NNCH home range (male
and female combined; 400 km?) derived from the raw GPS
data. Although it is unlikely that mountain lions can es-
tablish a home range in all areas of California, it is notable
that mountain lions can establish home ranges in areas
previously considered unsuitable such as the Sacramento
Valley (McClanahan et al. 2017), near downtown Los
Angeles (Benson et al. 2016), and the Mojave Desert
(Dellinger et al. 2019).

For the within home range scale analyses, we separated
our GPS data into 2 seasons: winter (Oct-Mar), and
summer (Apr-Sep). For each season we calculated

individual 95% a-NNCH home ranges resulting in 233 and
214 individuals represented in winter and summer, re-
spectively. We used individual GPS locations within these
95% seasonal a-NNCH home ranges (winter = 436,200
locations, summer =407,300 locations) to determine
mountain lion resource selection within their respective
seasonal home ranges. We sampled available resources for
each individual by generating regularly spaced points 100 m
apart within their respective 95% seasonal a-NNCHs
(Benson 2013). This resulted in ratios of 1:10 and 1:12 for
use and available locations in winter and summer, re-
spectively (Benson 2013).

We examined a suite of biotic and abiotic environmental
variables extracted from various sources to determine factors
associated with mountain lion habitat selection in California
at home range and within home range scales (Table 2).
Abiotic variables included elevation (m), slope (%), terrain
ruggedness (index), distance to secondary road (e.g., dirt
roads; m), and distance to year-round water (m). Biotic
variables included human density (per km?), distance to
forest cover (m), distance to open landscapes (m), distance
to shrub cover (m), and distance to impervious surfaces
(m; e.g., concrete or asphalt). These variables were on a
continuous scale, and were included to index prey habitat,
mountain lion hunting style, and anthropogenic mortality
risk. We also included a biotic variable, deer prevalence,
which we used only for our home range scale analysis. We
derived this variable from long-term population monitoring
data collected by the CDFW. Deer prevalence was cate-
gorical; options included year-round presence, summer
range only, winter range only, and limited presence (i.e.,
intermittently used). We chose all variables because they
influenced mountain lion habitat selection in California
(Pierce et al. 1999, Burdett et al. 2010, Wilmers et al. 2013,
Benson et al. 2016, Dellinger et al. 2018). We limited land
cover-derived variables to 4 options because of the diversity
of land cover across California (i.e., we did not want to
overparameterize the models) and because some land covers
were only present regionally (i.e., not available to animals in
some areas). Thus, we used forest cover, open landscapes,
shrub cover, and impervious surfaces given that these land
covers were generally present across the state in some var-
iation. We analyzed variables at a 30 X 30-m and 1 X 1-km
resolution for within home range and home range scale
analyses, respectively. We assessed distance to various

Table 2. Predictor variables used in analyses of habitat selection of mountain lions throughout California, USA, from 2001-2019.

Variable Units Resolution (m?) Order Source
Elevation m 30 Both U.S. Geological Survey (2017)

Slope ° 30 Both Derived from Elevation

Terrain ruggedness index 30 Both Derived from Elevation

Human density humans/km? 30 Both U.S. Census Bureau (2017)

Deer prevalence index 1,000 2 California Department of Fish and Wildlife (2016)
Distance to forest cover m 30 Both Sawyer et al. (2009)

Distance to open landscapes m 30 Both Sawyer et al. (2009)

Distance to impervious surfaces m 30 Both National Land Cover Database (2011)
Distance to shrub cover m 30 Both Sawyer et al. (2009)

Distance to secondary road m 30 Both U.S. Census Bureau (2017)

Distance to year-round water m 30 Both U.S. Geological Survey (2017)
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abiotic and biotic variables using a Euclidean distance
analysis (EDA) framework (Benson 2013). We stand-
ardized all continuous variables by subtracting the mean
from each value and then divided by the standard deviation
(i.e., we placed continuous variables on the same scale) to
render coefficient estimates derived from these variables
easier to interpret and comparable to each other. We then
intersected use and available data for both scales with spatial
raster layers of each variable mentioned above. We averaged
variables across each polygon (i.e., use =95% a-NNCH;
available = circular home ranges) for home range scale
analyses. For within home range scale analyses, we assigned
use and available locations the exact values of the pixel of
the corresponding variable. Given that some of these vari-
ables (e.g., human density and distance to secondary road)
likely changed over time during accumulation of our dataset,
we intersected use and available data for a given year with
the raster layer depicting that variable of interest in the
same year.

Using logistic regression, we assessed support for in-
cluding quadratic variables at both spatial scales, to help
identify potential thresholds in animal relationships to var-
ious environmental characteristics. After assessing quadratic
relationships, we checked for collinearity among predictor
variables at both spatial scales and removed those with high
correlations (|7| > 0.60). When 2 variables were correlated
at or beyond this threshold, we selected the more significant
variable when modeled on its own against use-availability
data using logistic regression. Following examination of
quadratic and collinearity relationships, we then used bi-
nominal logistic regression to build RSFs at the home range
and within home range scale using fixed and mixed effects
(Boyce et al. 2002, Manly et al. 2002). Given that GPS fix
rate success was <100%, we accounted for the influence of
GPS fix success on RSF estimates by including weights for
detection depending on land cover (Nielson et al. 2009).
Specifically, we used a fixed-effects model at the home range
scale because we assessed differences in use and availability
across mountain lion home ranges instead of based on the
different mountain lion project areas that contributed data
(Table 1; Holbrook et al. 2017). We used a mixed-effects
model at the within home range scale to build seasonal
RSFs because we assessed difterences in use and availability
for different mountain lion project areas. We included a
random effect for project area to account for unequal sam-
pling effort among project areas and potential regional dif-
ferences in mountain lion habitat selection due to ecoregion
(Grigione et al. 2002).

Though logistic regression is common for estimating an
RSF for studies of wildlife habitat selection (Morris et al.
2016), there are assumptions and considerations that must
be acknowledged. First, it is assumed that the resulting
relative probability of use derived from an RSF created
using a logistic regression is proportional to the actual
probability of use derived from a resource selection proba-
bility function (Keating and Cherry 2004). Johnson et al.
(2006) demonstrated that although this assumption is of
concern, it likely does not render the RSFs created via

logistic regression useless. Second, a use-availability dataset
such as ours can suffer from overlap or contamination
wherein locations designated as available to be used might
also be locations that were actually used (Keating and
Cherry 2004). Coefhicients of RSFs, however, were robust
to contamination except in extreme cases wherein overlap
was >50% and <20% is likely a more realistic amount of
contamination of GPS radio-collar data (Johnson et al.
2006). Next, autocorrelation of GPS locations can under-
estimate the variance associated with the coefficient esti-
mates, but not the coefficient estimates themselves, and
increase the chance of a type I error (Boyce 2006). We
attempted to control for autocorrelation among animals by
not using data of simultaneously radio-collared females and
dependent young. Further, we attempted to account for type
I errors arising from autocorrelation by focusing inter-
pretation of results on selecting the most parsimonious
model and not on statistical significance of individual vari-
ables within RSF models (Boyce 2006). Lastly, we consid-
ered location error, which was most likely to arise via Argos
GPS platforms. There were 3 projects that used this GPS
platform to some extent (Table 1). As mentioned above, the
lowest reported location accuracy for any of the project areas
was 100 m (project in the Tahoe and El Dorado National
Forests), which was larger than the smallest pixel size we
used (30 x30m). Most (99%) of the locations in this
project had a location accuracy of <30 m (Orlando 2008).
The project in Mono and Inyo counties relied primarily on
Globalstar or Iridium platforms. Further, approximately
84% of the GPS locations in the Santa Ana and Peninsular
mountains were from a Globalstar or Iridium platform or an
Argos platform with 3-dimensioinal fixes, which generally
have location errors <30 m. Given these aspects of location
error, most of our GPS data had location error that was less
than our smallest pixel size and data with location error
>30 m likely had little effect on our analyses.

We randomly selected 75% of the use and available home
range scale data to build a global fixed-effects RSF and 75%
of the use and available within home range scale data to
build seasonal global mixed-effects RSFs. We withheld the
remaining 25% of the data to evaluate the fit of model
coefficient estimates. We used Akaike’s Information
Criterion corrected for small sample sizes (AIC) to de-
termine the most parsimonious models (i.e., home range
scale, summer within home range scale, and winter within
home range scale; Burnham and Anderson 2002) from the
global models and all possible subsets. The most parsimo-
nious models were those with the lowest AAIC, and highest
AIC, weight (Arnold 2010). Resource selection function
outputs from the most parsimonious model yielded co-
efficient estimates that we used to understand mountain lion
relative probability of habitat selection along a gradient of
variables (Boyce et al. 2002).

We evaluated fit of the coefficient estimates of our most
parsimonious RSFs using the 25% of use and available data
excluded from the model building process. This cross-validation
method, shown to be appropriate for use-availability RSF
models (Johnson et al. 2006), involved first projecting
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coefficient estimates of each most parsimonious RSF in a
geographic information system (GIS) using the logit link
function. This resulted in raster pixel values ranging from 0 to 1.
We reclassified these values into 10 equally sized ordinal classes
using quantiles ranging from 1 to 10 (e.g., 0.0-0.1 becomes 1),
which depicted low (i.e., 1) to high (i.e., 10) relative probability
of use for mountain lions (Holbrook et al. 2017). We counted
the number of used locations in the withheld data that fell in
each ordinal class by overlaying the withheld data onto the
projected RSF. We then generated expected number of used
locations in each ordinal class based on number and average
value of pixels in each ordinal class (Johnson et al. 2006). Lastly,
we used Spearman rank correlations (r;) to assess association
between observed and expected number of used locations in
each ordinal class. A strong Spearman rank correlation co-
efficient indicated a model with good ability to predict moun-
tain lion relative probability of habitat selection (Johnson et al.
2006, Dellinger et al. 2013). We conducted cross-validation
separately for each of the 3 sets of most parsimonious RSF
coefficient estimates.

As a last step, we estimated the amount of suitable
habitat available to mountain lions in California. This
requires an understanding of the mechanisms explaining
selection at the home range scale and selection within
home ranges that give rise to the home range scale
distribution (Holbrook et al. 2017). Following determi-
nation of whether each set of most parsimonious RSF
coeflicient estimates had good ability to predict mountain
lion relative probability of habitat selection, we estimated
the cut-point probability of each model that captured 90%
of the observed mountain lion home ranges (i.e., second
order) or locations (i.e., third order; Johnson 1980,
Hebblewhite et al. 2011), respectively. We used this cut-
point to reclassify areas across California depicted in the
raster layers mentioned above as either unsuitable or
suitable with a relative probability of use above the cut-
point (Hebblewhite et al. 2014, Holbrook et al. 2017). We
developed multiscale seasonal habitat maps by multiplying
our home range scale raster layer separately with each of
the 2 seasonal within home range scale raster layers. The
result was separate summer and winter multiscale habitat
maps. Pixel values >0 in these multiscale habitat maps
represented habitat above the cut-point for the home
range scale and both within home range scale RSF
models. Thus, we used number of pixels in each multiscale
habitat map to estimate amount of suitable habitat avail-
able to mountain lions in California in summer and
winter, respectively. Lastly, we overlaid protected lands
(e.g., public lands and private lands with conservation
easements; California Protected Areas Database 2017)
onto the multiscale habitat maps to determine amount of
suitable habitat likely to remain undeveloped.

We used Program R version 3.4.3 (R Core Team 2017) and
associated packages MuMin (Barton 2019), Ime4 (Bates et al.
2015), and agricolae (Mendiburu 2019) for all statistical
analyses and data management (e.g., deriving home ranges).
We used ArcView GIS version 10.3.1 (Esri, Redlands, CA,
USA) and Geospatial Modelling Environment version 0.7.4.0

Table 3. Comparison of change in Akaike’s Information Criterion cor-
rected for small sample sizes (AAIC,), AIC, weights, and number of pa-
rameters (K) of the most parsimonious resource selection function models
for understanding home range scale (i.e., second-order resource selection;
Johnson 1980) habitat selection of mountain lions throughout California,
USA, from 2001-2019. The table below only represents models with an
AIC, weight>0.05 and AAIC,<5.

Model® AAIC, Weight K

Elevation + slope + SlOp62 + open + open2 + 0.00 0.38 12
forest + forest® + shrub + road + road? +
deer limited + deer year-round”

+ deer winter 1.55 0.18 13
+ shrub? 1.85 015 13
+ water 2.35 0.12 13
+ human 2.65 0.10 13
+ shrub? + deer winter 3.45 0.07 14

* All models include an intercept. Covariates included elevation; slope;
distance to open landscapes (open), forest cover (forest), shrub cover
(shrub), secondary roads (road), and year-round water (water); limited
deer presence (deer limited; intermittently used); year-round deer
presence (deer year-round); winter deer presence (deer winter); and
human density (human).

> All models included covariates elevation, slope, slopez, open, openz,
forest, forest?, shrub, road, roads?, deer limited, and deer year-round.
Only covariates not represented in all models are detailed for models
subsequent to the most parsimonious model.

(Beyer 2015) for spatial analyses and visual representation of

data and results.

RESULTS

Mountain lions selected for increasing elevation, deer prev-
alence, distance to open landscapes, and intermediate slopes
at the home range scale (Tables 3 and 4). Further, mountain
lions selected areas closer to forest cover, shrub cover, and
secondary roads relative to average available distances at the
home range scale (Table 4). Variables included in our most
parsimonious RSF models varied between spatial scales but
not seasons. At the home range scale there were 3 models
with AAIC, <2, but the evidence ratios derived from com-
paring the AIC, weight of the most parsimonious model with
the second and third models was 2.1 and 2.5, respectively,
allowing one to conclude that the most parsimonious model
was the best fitting model (Table 3). The most parsimonious

Table 4. The most parsimonious resource selection function (RSF) model
for understanding home range scale mountain lion habitat selection
throughout California, USA, from 2001-2019. Coeflicient estimates (§),
standard error (SE), and P-value are presented for each variable present in
the most parsimonious RSF model.

Variable B SE p

Elevation 0.796 0.153 <0.001
Slope 1.020 0.272 <0.001
Slope? -0.591 0.264 0.025
Distance to open landscapes 0.476 0.249 0.056
Distance to open landscapes® —1.884 0.469 <0.001
Distance to forest cover -3.727 2.655 0.161
Distance to forest cover® —8.865 5.013 0.077
Distance to shrub cover —4.390 2.301 0.056
Distance to secondary road —2.093 0.362 <0.001
Distance to secondary road? 0.308 0.069 <0.001
Deer presence limited -1.741 0.476 <0.001
Deer present year-round 1.051 0.169 <0.001
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Figure 2. Mountain lion relative probability of use (solid lines) and associated 95% confidence intervals (dashed lines) of variables as it relates to home range
scale (second order; Johnson 1980) habitat selection in California, USA, 2001-2019. We derived relative probabilities from coefficient estimates from the
most parsimonious home range scale resource selection function in a use and available framework.

home range scale RSF included coeflicient estimates of all
linear (i.e., non-quadratic) variables (T'able 2) except human
density, terrain ruggedness, distance to impervious surfaces,
and distance to year-round water. Terrain ruggedness and
distance to impervious surfaces were not included because
of high correlation (>0.60) with slope and distance to
secondary road, respectively. Slope and distance to secondary
road performed better than terrain ruggedness and distance
to impervious surfaces when compared to home range
scale use-availability data in a logistic regression framework
(i.e., higher R? value). Further, the most parsimonious home
range scale RSF included coefficient estimates for quadratic
variables of slope, distance to open landscapes, distance to
forest cover, and distance to secondary road (Table 4).
Increasing elevation (Fig. 2A), distance to open landscapes
(Fig. 2C), and deer prevalence (Fig. 2G) had a positive effect
on mountain lion relative probability of habitat selection
at the home range scale. At low slopes, mountain lions se-
lected for increasing slope; however, mountain lions avoided
increasing slopes as slopes increased beyond 21° (Fig. 2B).
Mountain lions selected for areas close to shrubs and
areas within and adjacent to forest cover and avoided areas
>2km from forest cover (Fig. 2D,E). Further, mountain
lions selected for areas near secondary roads (Fig. 2F).
Spearman rank correlations from our cross-validation
indicated our most parsimonious home range scale RSF
had good predictive ability (r,=0.90, P<0.001). The 90%
cut-point for our most-parsimonious home range scale
RSF was 0.08 and identified 127,319km? of suitable
mountain lion habitat across California at the home range

scale (Fig. 3A).

The top summer and winter within home range scale
RSFs included all linear variables and associated quadratic
terms except terrain ruggedness and distance to impervious
surfaces, which were omitted because of high correlation
with slope and elevation, respectively, at this scale (Table 5).
The most parsimonious RSFs for each season had AIC,
weights of >0.99 and thus were the only models we con-
sidered in further analysis. The random effect for project
area had a correlation of 0.071 and 0.105 for winter and
summer, respectively. Thus, project area accounted for more
variability in mountain lion relative probability of habitat
selection patterns in summer compared to winter. Broadly
speaking, these correlation values demonstrate the degree to
which animals in the same project area exhibited similar
habitat selection patterns. All variables were consistently
selected or avoided during both seasons (i.e., the signs of the
coefficients did not change between seasons; Table 5).
Mountain lions avoided areas of exceedingly high elevation
(Fig. 4A), close to open landscapes (Fig. 4C), and with
greater human density (Fig. 4H) in both seasons. At low
slopes, mountain lions again selected for increasing slope;
however, mountain lions avoided increasing slopes as slopes
increased beyond 20” (Fig. 4B). Mountain lions selected for
areas close to secondary roads and avoided areas >300 m
from secondary roads (Fig. 4F). Further, mountain lions
again selected for areas within and adjacent to forest cover
and shrub cover (Fig. 4D,E). Mountain lions also selected
for areas close to secondary roads and year-round water
(Fig. 4F,G). Though increasing values of some distance
variables (e.g., distance to forest cover) had initial negative
effects on mountain lion relative probability of selection and
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Figure 3. Spatial representation of the most parsimonious resource selection functions (RSFs) for understanding A) mountain lion habitat selection at the
home range scale, B) within home range scale in summer, and C) within home range scale in winter in California, USA, 2001-2019. We created the
integrated mountain lion summer habitat selection map (D) by multiplying the most parsimonious home range scale and within home range scale summer
RSFs, respectively. We created the integrated mountain lion winter habitat selection map (E) by multiplying the most parsimonious home range scale and
within home range scale winter RSFs, respectively. Relative probability of use in these figures ranges from low (0 or 0% relative probability of use) to high

(1 or 100% relative probability of use).

then positive effects on mountain lion relative probability of
selection at greater distances, these higher distances ex-
ceeded the average distance to the variable of interest (e.g.,
forest cover: X =3.5 + 6.4 [SD] km). Thus, positive effects
of high distance values on mountain lion relative probability
of selection are likely more a function of the modeling
process than any real biological process. Spearman rank
correlations from our cross-validation indicated our most
parsimonious summer and winter within home range scale
RSFs each had good predictive ability (summer: 7, =0.84,
P <0.001; winter: »,=0.97, P < 0.001). The 90% cut-points
for our most parsimonious summer and winter within home
range scale RSFs were 0.028 and 0.039, respectively. The
seasonal RSFs identified 218,892 km? and 214,128 km? of
suitable mountain lion habitat across California at the
within home range scale in summer (Fig. 3B) and winter
(Fig. 3C), respectively.

The multiscale habitat maps revealed 170,085 km? and
165,350 km? of habitat across California that can be

expected to be used by mountain lions in summer (Fig. 3D)
and winter (Fig. 3E), respectively (i.e., 40% and 39% of the
state). Of the available suitable habitat revealed in the
multiscale habitat maps, approximately 50% (84,858 km? in
summer and 83,403 km? in winter) existed on protected
lands or lands likely to remain undeveloped.

DISCUSSION

We quantified mountain lion habitat selection using a range
of environmental variables across California and GPS-collar
data collected from all over the state during an 18-year
period (Table 1). We demonstrated that 39-40% (de-
pendent on season) of California’s land mass consists of
habitat that we would expect mountain lions to use to some
extent, though relative levels of expected use, and possibly
density, vary substantially across California (Pierce et al.
1999, Burdett et al. 2010, Wilmers et al. 2013, Zeller et al.
2017, Dellinger et al. 2018; Fig. 3A). Although we identi-

fied suitable mountain lion habitat in all ecoregions, the
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Table 5. The most parsimonious resource selection function (RSF) models for understanding within home range scale (i.e., third-order resource selection;
Johnson 1980) habitat selection of mountain lions throughout California, USA, in winter (Oct-Mar) and summer (Apr—Sep) from 2001-2019. Given that
each of these seasonal RSF models had an Akaike weight of >0.99, we only display the top model for each season. Coefficient estimates (8), standard error
(SE), and P-value are presented for each fixed variable present in the most parsimonious seasonal RSF models. Variance (and SD) for the random variable
project area were 0.251 (0.501) and 0.385 (0.620) in winter and summer, respectively. Lastly, correlation for the random variable project area was 0.071 and

0.105 in winter and summer, respectively.

Winter Summer

Fixed variable g SE P B SE P

Elevation —0.673 0.005 <0.001 —0.630 0.006 <0.001
Elevation? —0.013 0.003 <0.001 0.104 0.002 <0.001
Slope 0.456 0.004 <0.001 0.283 0.005 <0.001
Slope2 —0.288 0.003 <0.001 —0.216 0.003 <0.001
Distance to open landscapes 0.036 0.005 <0.001 0.237 0.006 <0.001
Distance to open landscapes® —0.147 0.004 <0.001 —-0.236 0.005 <0.001
Distance to forest cover —2.576 0.033 <0.001 —3.521 0.038 <0.001
Distance to forest cover’ 0.847 0.051 <0.001 3.156 0.046 <0.001
Distance to shrub cover -0.777 0.049 <0.001 —1.649 0.049 <0.001
Distance to shrub cover? 7.898 0.119 <0.001 6.559 0.133 <0.001
Distance to secondary road —0.069 0.007 <0.001 —0.041 0.007 <0.001
Distance to secondary road? —-0.079 0.004 <0.001 —0.036 0.002 <0.001
Distance to year-round water” —0.443 0.008 <0.001 —0.471 0.008 <0.001
Distance to year-round water® 0.121 0.002 <0.001 —0.036 0.002 <0.001
Human density -1.363 0.124 <0.001 —0.083 0.038 0.029
Human density2 0.317 0.014 <0.001 0.046 0.012 <0.001

* No significant difference between seasons.

amount in each ecoregion varied widely. We verified a suite
of environmental variables, and 1 human-related variable
(i.e., secondary roads, which foster early successional plant
communities used by deer), were associated with mountain
lion habitat selection at the home range scale (Table 4). We
were unable to quantify the influence of human density on

A B

| Summer
Winter

Relative probability of use

mountain lion habitat selection at the home range scale
because this variable did not contribute significantly to our
modeling results for mountain lion habitat selection at this
scale, but our results generally agree with previous research
demonstrating that mountain lions select for areas of in-
creased topography, cover, and deer prevalence, and use
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Figure 4. Mountain lion relative probability of use (solid lines) and associated 95% confidence intervals (dashed lines) of variables as it relates to within
home range scale (third order; Johnson 1980) habitat selection in California, USA, 2001-2019, in summer (gray) and winter (black), respectively. We
derived relative probabilities from coeflicient estimates from the most parsimonious within home range scale resource selection functions for each season in a

use-available framework.

Dellinger et al. ¢ California Mountain Lions



secondary roads when available (Grigione et al. 2002,
Wilmers et al. 2013, Blake and Gese 2016, Dellinger et al.
2018). In general, mountain lion habitat selection in rela-
tion to these variables point to prey presence and vulner-
ability to predation as the primary drivers predicting
mountain lion habitat (Cougar Management Guidelines
Working Group 2005).

We found seasonality in mountain lion habitat selection
within home ranges (Fig. 3B,C) and there was significant
difference between seasons with respect to selection patterns
of the variables examined (Fig. 4; Table 5). Mountain lions
selected areas with lower elevations and closer to secondary
roads in winter than summer. Though previous studies have
reported seasonality in mountain lion habitat selection in
California, stemming from snow accumulation and sub-
sequent deer migration (Pierce et al. 1999, Dellinger et al.
2018), our statewide analysis included these areas in addi-
tion to areas where little seasonality exists in mountain lion
habitat selection patterns. The combined datasets could
have diluted the seasonality of habitat selection in the more
temperate areas of California. Further, we determined that
project area accounted for a large amount of variability in
habitat selection in summer (10.5%) and winter (7.1%).
This possibly demonstrates that habitat selection can vary in
mountain lions from one ecoregion to the next within sea-
sons, in addition to between seasons within an ecoregion
(Pierce et al. 1999, Grigione et al. 2002, Elbroch and
Wittmer 2012, Wilmers et al. 2013, Dellinger et al. 2018).
For example, coastal areas experience moderate climate
conditions year-round compared to more interior areas
where snow can accumulate seasonally. Further, deer in the
coastal areas tend to migrate shorter distances than deer in
more interior areas of California, stemming from the varied
effects of forage desiccation and snow accumulation (Loft
and Bleich 2014). It is likely that these seasonal differences,
and associated seasonal movement patterns of local deer
populations, are what are influencing differences in habitat
selection among ecoregions. We acknowledge that our in-
dividual project area datasets varied widely in size and, al-
though we tried to account for this via a random eftect for
project area, this variation in dataset size and distribution
potentially influenced our habitat selection results across
California.

When selecting a home range (i.e., second-order se-
lection), mountain lions in California appeared to choose
areas with the primary purpose of meeting their energetic
demands. Deer are the primary prey of mountain lions
throughout the state (Pierce et al. 1999, Smith et al. 2015,
Benson et al. 2016, Dellinger et al. 2018) and areas with
relatively high prevalence of deer were selected (Fig. 2G);
they also selected areas of complex topography (Fig. 2B)
and vegetative cover (Fig. 2C-E), which facilitates hunting
efficiency (Blake and Gese 2016). Preference for steep
slopes was limited however, indicated by intermediate slopes
having the highest relative probability of use in the home
range scale RSF. This finding suggests that in areas of
California where small populations of bighorn sheep are
present and predation is a concern, predation should be less

likely to occur where bighorn sheep have access to escape
terrain (slopes >27°; Hamel and Cote 2007).

After selecting a home range, further choices (i.e., third-
order selection) of habitat selection by mountain lions were
constrained by previous decisions. This can lead to divergent
responses to the same variable at differing spatial scales. For
example, as mentioned above, selection for increasing ele-
vation at the home range scale was likely in part necessitated
because mountain lions seek out complex topography for
aiding hunting efficiency (Blake and Gese 2016). Mountain
lions also potentially selected for increasing elevation at the
home range scale because elevation is negatively correlated
with human development. Conversely, mountain lions
showed decreasing selection for elevation at the within
home range scale (Fig. 4). This is likely because continual
increases in elevation (especially in the Sierra Nevada) in-
evitably lead to areas with harsher climates and less prey (at
least seasonally). Further, human density was negatively
associated with habitat selection at the within home range
scale (Fig. 4). Thus, mountain lions consider areas of human
activity and attempt to avoid them when moving about their
home range (Wilmers et al. 2013, Smith et al. 2015, Benson
et al. 2016). This may enable mountain lions to have a
cosmopolitan distribution, occurring in areas of wide-
ranging human densities.

Mountain lions are wide ranging elusive animals that
cannot be easily surveyed and monitored (Hornocker and
Negri 2010). Understanding habitat selection is a viable way
of identifying suitable habitat and subsequently defining
populations for which all desirable management actions will
be based (Cougar Management Guidelines Working Group
2005). The primary management action expected of most
wildlife agencies relates to estimating status and trend of
populations through time. Recent developments in statistics
and wildlife monitoring techniques suggest using a priori
information on habitat selection patterns of the species of
interest to inform sampling design (Royle et al. 2013). Such
an approach can result in more robust wildlife population
density estimates compared to sampling designs not informed
by habitat selection patterns (Long et al. 2012, Profhitt et al.
2015). In California, state wildlife managers have little
knowledge of number and trend of mountain lion pop-
ulations across the state. This is partly due to costs associated
with traditionally accepted methods of estimating mountain
lion populations (i.e., radio-collaring; Beausoleil et al. 2013).
Our integrated statewide habitat selection maps, combined
with recent genetic analyses (Gustafson et al. 2019), can
allow state wildlife managers to define mountain lion pop-
ulations across California (Warren et al. 2016) and then,
again relying on our statewide habitat selection models, im-
plement more cost-effective sampling protocols when de-
riving robust statewide abundance and regional population
estimates for mountain lions across California (Davidson
et al. 2014). This would reduce the need for invasive tech-
niques such as radio-collaring to estimate mountain lion
population density and trend.

Apart from population monitoring and estimation of
abundance, most wildlife managers deal with carnivores,
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including mountain lions, from the perspective of under-
standing predation on big game species (Hurley et al. 2011,
Forrester and Wittmer 2013). Given the unique status of
mountain lions in California as a specially protected species,
any attempts to mediate effects of mountain lions on big
game species, except federally listed mountain sheep species
(California Fish and Game Commission 2018), must be
done using methods other than lethal population control.
An understanding of habitat selection patterns can help
wildlife managers mediate effects of mountain lions on big
game species. For example, researchers have reported
mountain lions affecting already declining pronghorn
(Antilocapra americana) herds in northeastern California.
Juniper (Juniperus spp.) encroachment into pronghorn
habitat in northeastern California is thought to facilitate
mountain lion access to pronghorn via stalking cover into
the relatively open sagebrush (Artemisia spp.) landscapes
typically occupied by the pronghorn (Hudgens et al. 2016).
Using our results and an understanding of pronghorn dis-
tribution, targeted habitat treatments (i.e., juniper removal)
in California could restrict mountain lion access to prong-
horn and thus potentially reduce effects of predation.
Similar recommendations have been made to reduce
mountain lion predation on elk (Cervus canadensis; Lehman
et al. 2017) and black-tailed deer (Odocoileus hemionus
columbianus, Bose et al. 2018). Thus, in some instances
wildlife managers in California could influence levels of
mountain lion predation on socially and economically im-
portant big game species via manipulation of the habitat
within which the predator and prey interact rather than
lethally removing mountain lions to achieve decreased pre-
dation on big game (Bose et al. 2018).

A previous estimate of suitable mountain lion habitat in
California using an expert opinion approach reported
170,486 km? of moderately to highly suitable habitat
(Torres et al. 1996), slightly higher than our integrated
summer habitat estimate of 170,085 km?®. The similarity
between these estimates is noteworthy given the growth of
the human population in California by approximately 25%
in the interim. Despite this growth, much of California
(39-40%) still contains habitat we would expect mountain
lions to use to some extent. Our work demonstrates that it is
possible to maintain large tracts of suitable habitat for large
carnivore populations, even in the most populous state in
the country. Yet, given continued projections of human
population growth in California for the future (State of
California Department of Finance 2019), investigation of
the thresholds of adaptability of this wide-ranging and
generalist large carnivore is warranted. There is cause for
concern because half (50%) of the habitat we identified is
potentially subject to development. Further, in some regions
of California, much of these protected lands occur within a
fragmented landscape and lack adequate connectivity to one
another (Spencer et al. 2010, Zeller et al. 2017). Lastly,
wildlife managers in California will also need to begin
considering changes in habitat suitability and availability
due to effects of climate change, which can manifest
through long-term drought and result in or occur in

combination with large-scale high-intensity wildfires. These
factors have the potential to alter the amount and dis-
tribution of suitable habitat for mountain lions in California
(Jennings et al. 2016).

Wildlife habitat conservation efforts are most successful
when attempting to maintain integrity of habitat that is of
value to the target wildlife species or community those ef-
forts seek to benefit (Rabinowitz and Zeller 2010, Morrison
and Matthewson 2015). In some areas of California, habitat
fragmentation threatens viability of mountain lion pop-
ulations (Burdett et al. 2010). For example, the central
coast (i.e., San Luis Obispo and Monterey counties) of
California has large amounts of suitable mountain lion
habitat (Fig. 3D,E); however, this area is undergoing rapid
development (Thorne et al. 2006). This area has few large
blocks of conserved lands (e.g., U.S. Forest Service), relative
to other parts of the state, to help guard against habitat
fragmentation. Our integrated statewide habitat selection
maps, overlaid with land ownership layers, could be used to
prioritize conservation of suitable habitat potentially subject
to development to ensure against increasing fragmentation
or restore connectivity. Furthermore, given the wide-
ranging nature of mountain lions, conserving suitable
mountain lion habitat serves to benefit numerous other
species and helps maintain local biodiversity, connectivity,
and ecosystem processes in general (Cougar Management
Guidelines Working Group 2005, Thorne et al. 2006).
Finally, although secure habitat is essential for long-term
persistence of mountain lions in California, habitat alone is
not enough. Large carnivore persistence in areas with high
human populations are strongly dependent on human tol-
erance and management policy (Linnell et al. 2001).

MANAGEMENT IMPLICATIONS

Given that much of California is suitable mountain lion
habitat, we recommend increased educational outreach ef-
forts communicating the fact that many people live in or
near suitable mountain lion habitat and should act accord-
ingly to reduce conflict. In addition, future research exam-
ining aspects of mountain lion ecology should go beyond
seeking to primarily understand mountain lion habitat se-
lection patterns given that mountain lion habitat selection
was largely consistent across a diversity of environmental
conditions. Consistency in mountain lion habitat selection
patterns across an array of environmental conditions could
be used to facilitate development and use of more cost-
effective non-invasive population estimation techniques for
this elusive and wide-ranging large carnivore. Our results
indicate habitat treatments are potentially a viable option for
wildlife managers to reduce mountain lion predation on
declining or socially and economically important ungulate
species.
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