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Introduction

Abstract

Although managers safeguard protected areas for migratory species, little
consideration has been given to how migratory species might benefit parks.
Additionally, whereas land-sea connections are considered in management of
protected areas, most effort has focused on reducing negative “downstream”
processes. Here, we offer a proposal to promote positive “upstream” processes
by safeguarding the seasonal pulse of marine nutrients imported into fresh-
water and riparian ecosystems by spawning migrations of Pacific salmon. Cur-
rently, high rates of fishing limit this important contribution to species and pro-
cesses that terrestrial parks were designed to protect. Accordingly, we propose
limiting exploitation in areas and periods through which salmon runs bound
for terrestrial protected areas can migrate. Best suited for less commercially
valuable but relatively abundant and widespread pink and chum salmon (O.
gorbuscha and keta), our proposal thus considers ecosystem and societal needs
for salmon. We conclude by outlining strategies to overcome socio-economic
barriers to implementation.

coupled to adjacent buffer areas or other protected ar-
eas, even across national boundaries (Berger 2004; Thir-
good et al. 2004). Whereas achievements like these have

The primary goal of most protected areas is to provide
clearly defined geographical refuges for conserving biodi-
versity. Such hard boundaries, however, cannot always
capture the movement of mobile species or the diffuse
nature of many natural processes. Planning for migratory
species is especially difficult because their movements
can be larger than the protected areas themselves. For
example, large migratory fish often are not sufficiently
protected by marine protected areas because of fishing
pressure outside reserves (e.g., West et al. 2009). Help-
ful solutions have emerged in management of terrestrial
protected areas. Efforts to protect migratory ungulates,
for example, have focused on creating large core reserves

safeguarded terrestrial protected areas to benefit migra-
tory species, our review—on which we expand below—
suggests that little consideration has been given to pro-
tecting migratory species to benefit terrestrial protected
areas.

In addition to species, other materials also can flow
into and out of protected areas, including energy, nutri-
ents, and pollution, even across boundaries among differ-
ent ecosystems (e.g., marine, freshwater, and terrestrial).
What is increasingly appreciated is that protected areas
are not closed ecological systems that operate without in-
puts from nearby systems (Stoms ef al. 2005). Planning in
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coastal areas, for example, has identified important land-
sea connections to preserve the ecological structure and
processes of marine protected areas. The focus of these
approaches, however, has been on “downstream effects”;
that is, how land use such as agriculture or logging can al-
ter the function or value of the near shore environment
(Stoms et al. 2005; Tallis et al. 2008; Halpern et al. 2009).
Here, we present a case study that focuses on preserving
important “upstream” processes. We offer a proposal of
increased protection from exploitation for migratory Pa-
cific salmon (Oncorhynchus spp.) because salmon destined
for terrestrial protected areas make important contribu-
tions to these sites.

In developing our proposal, we considered the socio-
economic value of salmon, realizing that blanket reduc-
tions in salmon harvest are unlikely to be implemented.
As we explain below we believe that a focus on pink
and chum salmon (0. gorbuscha and keta), however, pro-
vides opportunity to implement our ideas without severe
economic consequences. Nonetheless, given the socio-
economic and cultural values of salmon, managers and
decision makers might perceive our proposal as radical.
We note, however, that the principles of fisheries man-
agement and applied conservation ecology often depart
conceptually because of differing goals. Accordingly, we
conclude by highlighting how our proposal ultimately
might yield economic and management benefits as well
as strategies by which barriers to implementation might
be overcome.

Pacific salmon as migratory,
cross-boundary species that contribute
to terrestrial protected areas

Pacific salmon migrate over large distances but differ from
other migrants like ungulates, birds and butterflies in fun-
damental ways. First, they cross boundaries among fresh-
water, oceanic, and terrestrial systems. They are born in
freshwaters and then migrate over thousands of kilome-
ters through the ocean for 18 months to 6 years, depend-
ing on the species. As reproductive adults, they return to
natal streams to spawn, some traveling upstream 1,000
km or more. Pacific salmon also have a distinct life history
in which individuals in most populations senesce after
this migration. Their bodies are often transported further
“upstream” into riparian areas by terrestrial predators and
scavengers, like bears (Ursus spp.), where their remains
and nutrients become available to a diversity of other
animal consumers as well as vegetation (e.g., Reimchen
1994, 2000; Willson & Halupka 1995; Ben-David et al.
1998; Cederholm et al. 1999; Gende et al. 2002; Naiman
et al. 2002; Schindler et a/. 2003; Quinn ef al. 2009). These
salmon migrants therefore provide important contribu-
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tions to the freshwater and riparian ecosystems where
they breed, which are often nutrient limited.

The dominant model that describes the contribution of
salmon to these areas identifies them as resource sub-
sidies, originating in one ecosystem and benefiting an-
other (Polis et al. 1997). Because salmon obtain most
of their body mass at sea, individuals that survive the
oceanic stage import a net positive quantity of marine-
derived nutrients into spawning areas. This “fertilizer ef-
fect” can influence bottom-up ecosystem processes such
as primary production, decomposition, and mineral cy-
cling (e.g., Zhang et al. 2003; Mitchell & Lamberti 2005;
Hocking & Reimchen 2009) and top-down processes in-
volving competition and predation (e.g., Ben-David et al.
2004; Gende & Quinn 2004; Darimont et al. 2008). The
breakdown of salmon carcasses in terrestrial habitats also
creates areas of high nutrient release (Holtgrieve et al.
2009), which ultimately can affect communities of ripar-
ian plants, terrestrial and freshwater invertebrates, res-
ident fish, and songbirds (Bilby et al. 1998; Mathewson
et al. 2003; Wilkinson et al. 2005; Christie & Reimchen
2008; Hocking & Reimchen 2009; Hocking et al. 2009).

Another principal concept describes salmon as ecosys-
tem engineers. Salmon modity creek substrates while
spawning and suspend nutrient-rich sediments and
salmon eggs in the water column, resulting in sub-
stantive nutrient export to estuaries and downstream
lakes (Moore et al. 2007, 2008). This process can alter
the production of biofilm, rates of detrital processing,
and the seasonal abundance of freshwater consumers.
Collectively, these observations suggest that spawning
activity can represent a key component of coupled
marine-freshwater nutrient cycling (Mitchell & Lamberti
2005; Lessard & Merritt 2006).

In addition to a key role played by salmon in ecolog-
ical interactions, coevolutionary association with other
species are also evident. For example, there is evi-
dence that aquatic insects may time their emergence
from streams as adults such that they avoid disturbance
caused by spawning salmon (Moore & Schindler 2010).
It has also been shown that the timing of lactation in
mink (Mustela vison)—which is decoupled from that pre-
dicted by latitude—occurs during salmon spawning pe-
riods (Ben-David 1997). Salmon availability can also
increase niche diversity within consumer populations
(Hocking et al. 2007; Darimont et al. 2009a), which is im-
portant because foraging behavior is a central and influ-
ential trait on which natural selection can act. Salmon
have also been linked to the maintenance of a rare poly-
morphic trait; recent evidence indicated that the unusual
white phase of the black bear (U. americanus) in coastal
British Columbia, Canada might be a salmon specialist
(Klinka & Reimchen 2009).
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Figure 1 Example of how migratory salmon &'

biomass is exploited by different users in the
near shore and terrestrial environments. Catch
by commercial, recreational, and subsistence
fishers is set conservatively at 50%, though in
some systems it may be as high as 90%. The
remaining salmon only then become available
to a suite of consumers and scavengers in
estuarine, freshwater, and forested areas of
spawning environments. Postfishing
proportions were adapted from empirical
estimates that focused on terrestrial vertebrate
and diperan predators and scavengers in
Reimchen (1994) from Bag Harbour, Haida
Gwaii, British Columbia.

Exploited salmon connections

Among myriad human influences that can influence
wild salmon numbers (and thus their contributions to
ecosystems; e.g., climate change, habitat loss, pollution,
hatcheries), exploitation in near shore waters—often just
a few kilometers from spawning areas—directly affects
spawner numbers (Figure 1). Commercial, recreational
and subsistence fisheries, the former usually subsidized
by governments, often catch 50%, and as high as 90%,
of returning adult salmon from near shore waters (Quinn
2005). Although cycles of salmon productivity regulated
by at-sea conditions are common (Mueter et al. 2002),
at any level of productivity fisheries harvests reduce the
amount of salmon that return to spawning areas. Im-
portantly, exploitation rates do not vary as a function of
whether runs return to terrestrial protected areas.

Interception of much of this yearly mass migration
limits the formerly large-scale uploading of marine nu-
trients and energy into near shore, freshwater, and ter-
restrial habitats. For example, Reimchen (1995) calcu-
lated that commercial fisheries in waters adjacent to
Haida Gwaii (British Columbia, Canada) on average take
twice as much salmon biomass as pinnipeds and marine
birds combined. More detailed estimates of the draw-
down of salmon-derived nutrients entering spawning ar-
eas are rare in the peer-reviewed literature. Schindler
et al. (2005) estimated that commercial fisheries have in-
tercepted about two-thirds of marine-derived nutrients
since about 1900 that would have otherwise been re-
ceived by a lake in Alaska, leading to a strong drop in
algal productivity (but not salmon production).

Seals &
sealions
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fishers
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Below we explore the implications of this exploita-
tion for the ecosystems and species that salmon nourish
and for which some terrestrial protected areas were in
fact created. This conservation paradox—and the fact that
managers of terrestrial protected areas currently have
little influence over exploitation levels on salmon runs
bound for terrestrial protected areas—has motivated us
to seek a remedy. We provide support for our proposal
by assessing how ecosystems might respond by restoring
these mass migrations, with a focus on terrestrial pro-
tected areas of British Columbia.

Salmon and terrestrial protected areas
in British Columbia, Canada

There are serious concerns about the viability of many
wild salmon populations in British Columbia. Assess-
ments during the 1990s indicated that the abundance
of all five species had been reduced by 13-50% com-
pared with historical estimates (Northcote & Atagi 1997;
see also Slaney et al. 1996; Gresh et al. 2000). More re-
cently, Price et al. (2008) noted that only 4% of moni-
tored streams in British Columbia were meeting manage-
ment targets for “escapements” (i.e., numbers of salmon
reaching spawning areas) set by Fisheries and Oceans
Canada.

Concurrent with these declines in salmon, the area
covered by terrestrial protected areas (provincial parks
and ecological reserves as well as federal parks) has
recently increased in British Columbia. The provincial
government, which manages most of British Columbia’s
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Figure 2 Average (1999-2008) yearly spawning salmon biomass (kilo-
grams) in terrestrial protected areas of British Columbia (provincial and
national parks as well as ecological reserves). Biomass was calculated at
spatial points where enumeration occurred (Fisheries and Oceans Canada,

protected areas, recently announced a large increase
in terrestrial protected areas. Approximately 1.3 million
ha were added in 2007 across 85 new coastal conser-
vancies on British Columbia’s coast. These areas host
high salmon densities and represent 70% of all salmon

unpublished data). Consequently, some runs that might spawn in part
within protected areas were assigned to unprotected areas, and vice
versa. Coastal protected areas (inset) host 70% of the spawning biomass
within British Columbia’s parks.

biomass returning to British Columbia’s parks (Figure 2).
Province-wide about 20% of salmon runs, represent-
ing roughly 30% of the average spawning biomass over
the last decade, return to terrestrial protected areas
(Table 1).

Table 1 Proportions of salmon spawning waterways (and their estimated collective yearly biomass) in British Columbia that occur within protected areas

(provincial and national parks as well as ecological reserves). Runs (geo-referenced to enumeration points) were included if they were monitored at least

five times during the decade; biomass proportions are based on 10-year (1999-2008) escapement averages (Fisheries and Oceans Canada, unpublished

data). Biomass calculations were estimated using average mass of each species and sex, assuming a 1:1 sex ratio (Groot & Margolis 1991). Mapping and

calculations were performed in ArcGIS 9.3 (ESRI, Inc.).

Species Proportion of runs in TPAs (%) Proportion of biomass (kilotonnes) in TPAs (%)
Chinook (0. tshawytscha, Walbaum) 33/193 (17.1) 1.6/8.3(19.3)
Chum (O. keta, Walbaum) 971421 (23.0) 4.4/12.0 (36.4)
Coho (0. kisutch, Walbaum) 64/388 (16.5) 0.5/1.9 (24.8)
Pink (0. gorbuscha, Walbaum); even year? 82/271 (30.3) 3.8/10.3 (37.4)
Pink; odd year® 821271 (30.3) 6.6/15.9 (41.3)
Sockeye (0. nerka, Walbaum) 68/301 (22.6) 1.3/13.8 (9.5)

All species

1891897 (21.1)

18.2/62.2 (29.2)

@Pink salmon have an invariable 2-year life cycle; even and odd year populations do not interbreed. Consequently, data are commonly presented

separately.
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Our proposal

We propose that some salmon populations (“runs”), or
considerable portions thereof, that are bound for British
Columbia terrestrial protected areas be granted protection
from exploitation. Our idea can be traced to an early call
for salmon ecosystem management. Reimchen (1995) ar-
gued that the commercial extraction of salmon would
directly limit the carrying capacity of the estuarine and
terrestrial environments of a proposed terrestrial pro-
tected area (Gwaii Haanas National Park Reserve, British
Columbia); a proposal, ultimately unsuccessful, was of-
fered to park managers that extraction be scaled back
gradually to pre-European-contact exploitation to restore
the ecosystem.

In presenting our case, we differentiate it from other
calls for salmon ecosystem conservation. First, our pro-
posal departs from management aimed at enhancing fish-
eries values. For example, there have been calls for fixed
catches, allowing escapement to vary (Hilborn 2006). It
also ditfers from salmon “stronghold”proposals, which fo-
cus on terrestrial and riverine protection for salmon (e.g.,
Lichatowich et al. 2000). Second, as we detail further,
our proposal prioritizes safeguarding specific species and
populations, while acknowledging that fishing will oc-
cur on others. Similar plans to restore salmon nutrients
can be extended subsequently to other populations and
species, should managers and society consider the ap-
proach valuable. Third, our proposal would involve reci-
procity. Currently, managers of terrestrial protected areas
provide critical habitat protection to salmon, with bene-
fits to salmon managers and fishers. In return, however,
fisheries managers permit high exploitation on returning
adults, often just kilometers from terrestrial protected ar-
eas. Our proposal suggests that fisheries managers return
the favor, though not as a transition from one asymmetric
relationship to another. Dense spawning runs envisaged
by this proposal could promote dispersal and rescue ef-
fects to spawning areas of nearby (fished) runs. Although
an untested hypothesis, such a “spillover effect”(Roberts
et al. 2001) from a network of terrestrial protected area
runs might potentially result in ecological and economic
resilience of the nearby fisheries (Healey 2009; see also
Schindler et al. 2010).

Technical solutions that can overcome barriers to this
proposal are possible. For example, terminal commer-
cial fisheries (in which fish of known populations are
exploited at river mouths and in rivers) and area-based
recreational fisheries could support continued fishing of
runs bound for areas outside of terrestrial protected areas
while protecting “corridor” areas (and periods) through
which terrestrial protected area runs can migrate. Dis-

Salmon for Parks

criminating among runs harvested beyond river mouths
can be supported by emerging knowledge of near shore
adult migration routes and schedules. This information
can be complemented by another imperfect but nonethe-
less potentially valuable management resource for stock
differentiation: rapid genetic analyses on field-sampled
individuals in test fisheries prior to fishing (e.g., Beacham
et al. 2004).

Political barriers to any proposed changes to the pri-
marily mixed-stock exploitation model, however, are sig-
nificant. At the broadest scale, for example, integrat-
ing additional complexity into the already complicated
and often disputed U.S.-Canada Pacific Salmon Treaty
(Noakes et al. 2005) would likely face considerable op-
position. At a regional scale, commercial license holders
would object strongly to any changes that restrict har-
vests or modify where they occur. Moreover, in coastal
British Columbia, the strength of First Nations’ cultural
identity with salmon is matched only by their increas-
ing legal entitlement to this resource. Furthermore, many
groups co-manage several of the new terrestrial protected
areas and have developed their own land and resource
management plans. Accordingly, any proposal will re-
quire meaningful dialogue about trade-offs among cul-
tural, socio-economic, and conservation values.

We fine-tune our proposal here by highlighting how
these technical and political challenges vary by species
as a function of their different life histories and eco-
nomic values (for summary of these ditferences, see
Quinn 2005). From a commercial perspective, our plan
would not be reasonable for Chinook and coho salmon
(0. tshawytscha and kisutch), which spend much of their
lives along the near shore waters of western North Amer-
ica and thus are continuously vulnerable to fishing by
multiple jurisdictions. In contrast, pink, chum, and sock-
eye salmon (O. gorbuscha, keta, and nerka) spend most of
their lives offshore. Although significant exceptions ex-
ist (e.g. Fraser River sockeye are captured several hun-
dred kilometers from the mouth of the Fraser in both
Canadian and U.S. waters), these species are often fished
in a more terminal manner, which more readily permits
discrimination among stocks. Additionally, pink, chum,
and sockeye contribute most of the marine subsidy and
to a large diversity of streams in western North Amer-
ica (Quinn 2005). Finally, chum and pink would be the
most appropriate early targets for changes to manage-
ment because they are the least commercially valuable
salmon. For example, ex-vessel prices in Alaska for these
two species in 2002 were $0.06 and $0.16/pound, com-
pared to $0.37, $0.55, and $1.23 for coho, sockeye, and
Chinook, respectively; the same ranking and similar pro-
portional differences among species also occurred in the
late 1980s and 1990s (Eagle et al. 2003).

Conservation Letters 3 (2010) 379-389 Copyright and Photocopying: ©2010 Wiley Periodicals, Inc. 383



Salmon for Parks

Link to multiple policy initiatives

Our proposal is consistent with several emerging poli-
cies. At the broadest scale, our proposal to allocate more
salmon to ecosystems is consistent with a global move-
ment towards ecosystem-based fishery management. In
theory, this management paradigm reverses the order of
management priorities to start with the ecosystem rather
than maximizing catches of target species (Pikitch et al.
2000). Minimally, it can include nonfishing values as cri-
teria in evaluating trade-offs among harvesting options
(Kellner et al. in press). Moreover, in Canada, a novel
landmark policy of the federal government (Wild Salmon
Policy, Fisheries and Oceans Canada 2005) has explicitly
recognized that nonhuman users of salmon—including
those in the terrestrial and freshwater domains—ought
to be considered in fisheries management. A specific plan
by which such allocation could occur, however, has not
yet been proposed.

Another direct policy link relates to terrestrial protected
area planning now occurring in coastal British Columbia.
At a broad level, planning by British Columbia parks is
guided by a conservation principle “to protect and man-
age lands and natural and cultural values within, and ad-
jacent to, the province’s parks” and a strategy to “work
with other areas of government” (British Columbia Min-
istry of Environment 2008). These guiding values could
be applied to exerting influence on federally managed
fishing levels imposed on runs bound for terrestrial pro-
tected areas. Indeed, salmon declines have been iden-
tified as a threat to parks. The management plan for
the massive Kitlope Conservancy, for example, high-
lighted the severe recent declines in salmon. Stocks of
chum, pink, and coho (0. gorbuscha, keta, and kisutch)
during the park’s first decade (1991-2001) were less
than 10% of mean levels observed during the previous
four decades (British Columbia Ministry of Environment
2007).

Implications of restoring salmon
contributions to terrestrial protected
areas

Trading off fisheries catches for the restoration of eco-
logical services provided by spawning salmon might pos-
itively affect terrestrial ecosystems and the species and
processes for which many terrestrial protected areas were
created. For example, salmon abundance has been linked
positively to the productivity of its consumers. In griz-
zly bears (Ursus arctos horribilis), individuals and popula-
tions with greater access to salmon had greater litter and
body sizes, as well as population density and productiv-
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ity (Hilderbrand et al. 1999; Mowat & Heard 2006). On
smaller scales, forests adjacent to rivers (or reaches) with
salmon had higher songbird density than those with-
out (Gende & Willson 2001; Christie & Reimchen 2008).
Salmon subsidies can positively affect resident fishes too
(e.g., Scheuerell et al. 2007). In Alaska, Denton et al.
(2009) found that Dolly Varden trout (Salvelinus malma)
foraged heavily on sockeye salmon (O. nerka) eggs and ju-
veniles as well as on blowfly maggots (family Calliphori-
dae) that themselves had foraged on adult salmon car-
casses; growth rates increased significantly once eggs and
maggots were seasonally available.

Particularly compelling support for an “abundance
matters” hypothesis occurs in studies that have linked
salmon productivity with ecological processes through
space and/or time. For example, Schindler et al. (2005)
showed a strong positive relationship between estimated
salmon escapement and algal pigments (a proxy for
primary production) in a sockeye lake in Alaska over
a 300-year period. On a smaller spatial and temporal
scale, analyses of tree ring growth suggest that riparian
plant productivity was positively associated with salmon
abundance among and within watersheds through time
(Helfield & Naiman 2001; Reimchen ef al. 2003). Emerg-
ing across-watershed studies demonstrate how salmon
density and habitat interact to affect terrestrial ecosystem
processes (e.g., Selbie et al. 2009; Hocking & Reimchen
2009). Moreover, a recent meta-analysis of 37 publica-
tions on 79 salmon-bearing waterways identified vari-
able, yet overall positive, associations between carcass
density and the abundance of several response vari-
ables: dissolved nutrients, sediment biofilm, and densi-
ties of macroinvertebrates and resident fish (Janetski et al.
2009). Whereas many of the responses will be positive,
there might also be negative population consequences for
competing species. Unambiguously, however, consump-
tion of any amount of salmon by in situ consumers (e.g.,
bears, birds, and so on) results in no net loss of trophic
biomass to a recipient community within a spawning wa-
tershed in a given year, whereas a similar sized removal
by fisheries yields a distinct loss of that biomass.

Restoring salmon to terrestrial protected areas also
might restore natural evolutionary processes now poten-
tially modified by fishing. For example, salmon runs free
from fisheries-induced selection might restore size and
run timing distributions within populations previously al-
tered by selective mortality imposed by fisheries (Quinn
et al. 2007; Hard et al. 2008; Darimont et al. 2009b).
In an era of climate change, increased variation in run
timing within and among salmon populations might in-
crease resilience to harmful water temperatures or other
factors that might alter spawning environments in the
future.
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Policy-relevant recommendations for
implementation

(1)

Conservation Letters 3 (2010) 379-389 Copyright and Photocopying: ©2010 Wiley Periodicals, Inc.

Engage participants in, and champions of, salmon ecosys-
tem restoration. Any proposal to restrict human
activity, particularly one counter to dominant mod-
els of industry and resource management, risks
failure or unintended negative consequences. For
example, should our proposal or elements thereof
be implemented, future calls for increased terrestrial
protected areas might face resistance from new op-
ponents (i.e., fishing interests). Consequently, our
plan needs champions. Those charged with protect-
ing the freshwater life stages of salmon, and whose
terrestrial protected areas can reap the benefits of
their restoration, are ideal. Likewise, scientists and
managers can speak to the plan’s benefits. Unex-
ploited “baseline” runs can provide: (i) measures
against which the effects of region-wide environ-
mental change can be gauged, and (ii) a “best man-
agement” practice against which other treatments
(i.e., exploitation levels) can be compared. Moreover,
monitoring salmon populations and the ecosystems
they subsidize pre- and post-implementation can per-
mit testing of the “spillover” and “abundance mat-
ters hypotheses described earlier. In short, such an
adaptive management experiment on a large spatial
scale could permit a better understanding of the value
of salmon to terrestrial watersheds than historical sci-
entific approaches, which have necessarily occurred
across studies scattered over space and time.

Reduce exploitation on specific runs of salmon bound for
terrestrial protected areas. As discussed previously, our
proposal might be most easily implemented on spe-
cific species—namely pink and chum salmon—for
several reasons, including that they spawn at high
densities and so contribute substantial marine sub-
sidies to upstream areas, spend most of their lives
offshore, are fished in a terminal manner, and be-
cause they are the least commercially valuable of the
Pacific salmon. For these reasons, we believe that a
reduction in exploitation on pink and chum bound
for terrestrial protected areas could maximize eco-
logical benefits of salmon while minimizing the eco-
nomic impacts of harvest reduction, and thus repre-
sents a compromise between ecological and societal
demands for salmon resources.

Reduce exploitation on terrestrial protected areas-bound
runs on a graduated schedule. Our proposal re-
quires cooperation from fishers. Allowing time
for these stakeholders to adjust to reduced fish-

ing levels gradually could mitigate potential
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conflict by distinguishing our proposal from an
immediately imposed and drastic reduction in
exploitation levels. Likewise, early implemen-
tation among select terrestrial protected areas,
starting with pilot areas that can be monitored and
assessed, would likewise ease the transition. Finally,
the best targets for early implementation would be
runs that are already closed for fishing because of
low returns.

Provide alternative economic models. A realistic plan to
support such a transition requires alternative mod-
els of generating economic wealth from salmon. This
includes a conversion to terminal fisheries on non-
terrestrial protected areas runs, which underlies our
proposal. Shifting commercial opportunities from in-
dustrial boats involved in mixed-stock fisheries to lo-
cal in-river fishers is central to resilient economic
models of fishing (Healey 2009). A transition like
this is currently underway in north coastal British
Columbia, where an in-river, terminal fishery on the
Skeena River has generated increased employment
(via local processing and marketing of fish) and bet-
ter prices (Taylor & Dickie 2009). We speculate, too,
that greater salmon returns to terrestrial protected
areas might support increased economic opportuni-
ties in wildlife viewing (e.g., bears, Bald Eagles [Hali-
aeetus leucocephalus], and killer whales [Orcinus orca])
as well as other salmon-reliant ecotourism activities
(e.g., Clayton & Mendelsohn 1993). Our proposal
notwithstanding, these are important opportunities,
especially when future revenues from fishing are
uncertain; in British Columbia, conservation con-
cerns have already prompted widespread mixed-
stock commercial fishing closures and will likely do so
into the future (Fisheries and Oceans Canada 2010).
Finally, for healthier runs, allowing increased escape-
ments might not cause a proportionate decline in rev-
enues; Hilborn (2006) noted that high catch years for
sockeye salmon in Alaska lead to poorer quality fish
that fetched reduced prices.

Evaluate the “over-escapement” paradigm. One of the
primary models that drives fisheries policy is Ricker
(1954), which predicts a reduction in offspring pro-
duced at high spawning densities. Its prominence
has led to the general belief that if “too many”
salmon spawn, fewer fish will return in the next gen-
eration. A comprehensive review, however, found
that although the process occurs occasionally it does
not drive population collapses (Walters et al. 2004).
The argument is likely moot, however, for many
salmon populations in British Columbia, which host
spawning levels below densities at which density-
dependence would occur (e.g., Price et al. 2008).
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Nonetheless, depending on the nature of the density-
dependent relationship, we acknowledge that pro-
tecting 100% of a run might not be the right goal.
A modest exploitation rate on runs bound for ter-
restrial protected areas might simultaneously provide
economic benefits and increase run productivity in
subsequent generations (to be shared among humans
and the terrestrial ecosystem). Minimally, a care-
fully monitored change to exploitation levels can per-
mit further examination of the “over-escapement”
paradigm.

(6) Foster increased integration between fisheries and parks
managers. A fragmented governance structure for
salmon often undermines conservation management
(Kolmes & Butkus 2006). We recommend increased
integration—at minimum through the establishment
of liaison positions and joint meetings—between fed-
eral salmon managers and protected area managers
from federal, provincial, and aboriginal governments
(who also manage freshwater salmon habitat). This
would be consistent with repeated calls for integrated
planning that led a British Columbia government ad-
visory body to call for a “Water and Land Agency”;
this organization would break down silos to make all
decisions concerning land and water use, including in
marine environments, based on ecosystem-wide con-
siderations (British Columbia Salmon Forum 2009).

Conclusion

We began this collaboration asking, “Are terrestrial pro-
tected areas that host highly exploited salmon runs truly
protected?” Evidence we have provided suggests not. In
an era when protected areas are becoming increasingly
“humanized” by accommodating resource extraction that
undermines the notion of protection (Locke & Dearden
2005), we have presented a remedy that involves “de-
humanizing” the footprint on migratory salmon bound
for terrestrial protected areas. However, given the socio-
economic and cultural values of salmon, coupled with
a legacy of highly exploitative management, the eco-
centric prescription we have offered will undoubtedly be
viewed by some as radical. Yet, what might be defiant
from a management perspective would be considered an
important restoration activity—or at minimum an oppor-
tunity for natural experimentation—by many ecologists.
Although some might deem our idea politically unachiev-
able, our aim is to inform and inspire decision-makers
with a plan that not only favors biodiversity but also one
that ultimately might yield economic and management
benefits. Our goal is to inoculate the literature with a
provocative idea to stimulate discussion.
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Recognizing that important linkages exist between
protected areas and nearby lands or waters (Stoms
et al. 2005), promoting positive upstream processes like
salmon migrations should be granted the same consid-
eration as minimizing negative downstream processes
such as habitat modification. This might be important
because migrations in general are becoming increasingly
endangered phenomena (Berger 2004). Salmon are not
alone among migrants in providing important biologi-
cal services to areas they visit; ungulates stimulate pri-
mary productivity; butterflies pollinate; birds distribute
seeds and so on. Accordingly, if these central ecological
processes are valued in protected area management, in-
creased consideration should be granted to protecting mi-
gratory species bound for their borders.
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