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Prey anti-predator behaviours are influenced by perceived predation risk in a
landscape and social information gleaned from herd mates regarding preda-
tion risk. It is well documented that high-quality social information about
risk can come from heterospecific herd mates. Here, we integrate social infor-
mation with the landscape of fear to quantify how these landscapes are
modified by mixed-species herding. To do this, we investigated zebra
vigilance in single- andmixed-species herds across different levels of predation
risk (lion versus no lion), and assessed how they manage herd size and the
competition–information trade-off associatedwith grouping behaviour. Over-
all, zebra performed higher vigilance in high-risk areas. However, mixed-
species herding reduced vigilance levels. We estimate that zebra in single-
species herds would have to feed for approximately 35 min more per day in
low-risk areas and approximately 51 min more in high-risk areas to compen-
sate for the cost of higher vigilance. Furthermore, zebra benefitted from the
competition–information trade-off by increasing the number of heterospeci-
fics while keeping the number of zebra in a herd constant. Ultimately, we
show that mixed-species herding reduces the effects of predation risk,
whereby zebra in mixed-species herds, under high predation risk, perform
similar levels of vigilance compared with zebra in low-risk scenarios.
1. Introduction
Predators can influence populations, communities and, ultimately, ecosystem
function through the combination of consumptive and non-consumptive effects
[1,2]. To understand the effects of predation risk and fear on prey species, these
concepts have been developed into a model that represents relative levels of
perceived predation risk across a landscape (i.e. landscape of fear [3]). By using
social information to obtain more accurate information about the presence/
location of a predator, prey species can mitigate the effects of predation risk,
thereby, influencing the landscape of fear. Social information is information
gleaned from observing the positions or behaviours of other animals including
both heterospecifics or conspecifics (e.g. signals and cues [4,5]). It is well docu-
mented that social information gained through mixed-species herding can
reduce predation risk [6,7]. Because of the effects of mixed-species herding on
the landscape of fear, these two concepts are intimately linked. However, to
our knowledge, no study has quantified how landscapes of fear in different
areas varying in predation risk (e.g. high risk versus low risk) are modified
by mixed-species herding. Thus, the current paradigm fails to incorporate this
critical aspect of reducing predation risk. Understanding this relationship is criti-
cal because the behavioural response of prey species to predators can have

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2019.2555&domain=pdf&date_stamp=2020-03-04
mailto:keenanstears@ucsb.edu
https://doi.org/10.6084/m9.figshare.c.4860606
https://doi.org/10.6084/m9.figshare.c.4860606
http://orcid.org/
http://orcid.org/0000-0003-1012-5838
http://orcid.org/0000-0002-5544-7673
http://orcid.org/0000-0003-2063-1478
http://orcid.org/0000-0002-6451-6132


royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

287:20192555

2
substantial cascading effects within ecosystems and can con-
strain species coexistence and biodiversity maintenance [8,9].

Predation is a selective force, thus behavioural decisions
made by prey species to avoid predation can greatly alter
their probability of survival. Social information regarding
predators can elicit important collective behaviours such as
grouping and group vigilance [10]. While per capita risk
can vary inversely with group size (i.e. dilution and detec-
tion; see [7]), competition for resources can increase with
the number of individuals in a herd [11]. Frequently, preda-
tor–prey models focus on single pairs of predator and prey
species (e.g. mule deer–puma [12]), whereas landscapes
typically contain multiple prey species and multiple preda-
tors that pose different levels of threat [13]. Thus, it is
important to evaluate responses to perceived risk in the con-
text of the diverse, multispecies assemblages within which
an individual lives [14]. For example, an individual could
attempt to reduce risk by grouping with conspecifics, or
by joining a group that contains both conspecific and hetero-
specific individuals. Not only does social information
influence grouping behaviour as a whole but it also affects
how individuals select herd members. For example, in
some species, individuals select for the quality rather than
the quantity of group members [7]. However, the value
and reliability of information from heterospecifics is contin-
gent on whether they share a common predator (i.e. they are
diluting partners [7,15]).

In addition, different prey species often have different
sensory modalities and therefore differ in their ability to
detect shared predators [14]. As a result, valuable infor-
mation about predation risk can be gleaned from alarm
calls [15] and body posture [16] by heterospecific herd
mates. Thus, by forming mixed-species groups, individuals
can obtain a more comprehensive assessment of threat, and
at times even better information about predation risk from
a heterospecific than from a conspecific [16]. A species that
provides information that is disproportionately more valu-
able than the information from other members of a mixed
herd is considered a keystone informant (sensu [17]). Conse-
quently, social information about predation risk plays an
important role in vigilance and grouping behaviour, both of
which can ultimately influence individual fitness [18,19],
as well as population and community dynamics through
indirect effects [17].

A major cost associated with grouping behaviour, and
larger herd sizes, is increased competition for resources
[11]. Competition is likely to be greatest between conspecifics
compared with heterospecifics because of the potential for
greater niche overlap [20]. Thus, if social information regard-
ing predation risk is an important driver for grouping and
vigilance behaviour, then changes in predation risk are
likely to influence the behaviourally mediated responses of
prey species because of the inherent competition–information
trade-off associated with herding [21]. This means that
grouping behaviour observed across different levels of risk
should reflect trade-offs being made by individuals balancing
potential costs of competition (increased herd size) with the
benefits of predator detection [22]. Therefore, under high
levels of predation risk, we would expect prey to form
large herds by ideally herding with heterospecifics because
of better predator detecting abilities and reduced competition
compared with herding with conspecifics. By contrast, we
would expect that predator removal would result in a
collapse of anti-predator responses (e.g. [23]) and the break-
down of larger herd formations in an attempt to reduce
potential competition [11].

Plains zebra (Equus quagga) frequently form mixed-
species associations and use herding behaviour to obtain
social information about perceived predation risk [7,16,24].
Thus, to better understand the potential of social information
to modulate the landscape of fear of prey species, we investi-
gated zebra vigilance in single- and mixed-species herds
across different levels of predation risk based on the presence
or absence (high risk versus low risk) of lions (Panthera leo).
First, we measured zebra vigilance, as a proxy for the effec-
tiveness of their anti-predator grouping behaviours (i.e.
single- versus mixed-species herding) [7], to determine if
mixed-species herding elicited any potential benefits across
different levels of predation risk. Then, we quantified the
difference in vigilance as a function of grouping behaviour
and predation risk to determine if mixed-species herding
can lower vigilance to similar levels obtained under low-
risk scenarios (i.e. level the landscape of fear). We then
assessed how zebra grouping behaviour influenced herd
size and the competition–information trade-off across differ-
ent levels of predation risk. Finally, we model and discuss
the implications of the investment cost of anti-predator
responses to predation risk on prey species and equate
these investment costs to time lost to foraging.

2. Methods
We conducted fieldwork in four protected areas in South Africa
that have varying levels of predation risk for zebra based on the
presence or absence of lions during August–September (late dry
season) in 2011 (three sites) and 2015 (one site). Lions are the
main predator of zebra and approximately 15% of lion kills com-
prise zebra [25]. We deemed Hluhluwe-iMfolozi Park (HiP) and
Kruger National Park (KNP) as ‘high risk’ because of the pres-
ence of lions. Both sites have an intact large predator guild,
which consists of similar densities of lion (HiP:13 lions/
100 km2 [26] and KNP: 8 lions/100 km2 [27]) as well as second-
ary predators that include leopard (Panthera pardus), African
wild dog (Lycon pictus), cheetah (Acinonyx jubatus) and spotted
hyena (Crocuta crocuta)—all of which also can prey on zebra,
although they are not a preferred prey item [28–31]. Ithala
Game Reserve and the Cape Vidal section of the Isimangaliso
Wetland Park were considered to be ‘low risk’ because they
lacked lions altogether, although they do have populations
of both leopard and spotted hyena.

To minimize spatial and temporal differences in perceived
predation risk, we limited observations to herds feeding in
savannas and only collected data 2 h after first light and 2 h
before last light [7,16]. All observations occurred from a station-
ary vehicle using binoculars. To avoid potential behavioural
changes due to vehicles, we only collected data when no other
vehicles were present and when the zebra were more than
20 m from the road. We focused our observations in open-
canopy savanna habitats, which had approximately 40–60%
tree cover. These open-canopy savannas are widely represented
across all of our study sites. While differences in percentage
tree cover could influence local vigilance levels, we were more
interested in approximating vigilance at the landscape scale
(i.e. open-canopy savannas across our study sites).

Schmitt et al. [7] found that predator detection, rather than
dilution effects, was the main factor in reducing zebra vigilance
in small and medium herd sizes (2–30 individuals). Furthermore,
these smaller herds occurred more frequently at the landscape
scale (for more information, see [7]). Thus, we limited data
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collection to herd sizes of fewer than 30 individuals because we
were more interested in the active use of social information to
avoid predators (detection) rather than the passive use of
dilution to minimize predation risk. Additionally, we only col-
lected data from mixed-species herds comprised of species that
share lions as a common predator. Thus, our mixed-species
herds comprised of zebra and one or more of the following
ungulate prey species: wildebeest (Connochaetes taurinus; partial
competitor), kudu (Tragelaphus strepsiceros; non-competitor) and
waterbuck (Kobus ellipsiprymnus; partial competitor). All of
these species were present across all of our study sites and are
either preferred prey items of lions (wildebeest) or are eaten in
relation to their availability (kudu, waterbuck) [25]. Importantly,
because all of these species share a common predator, they are all
able to reduce predation risk via both dilution and detection
[7,32]. The mechanism through which each heterospecific con-
veys information (i.e. alarm calls), or how differences in
species’ detection abilities (i.e. sensory modalities), influenced
herding preference was beyond the scope of the study.

Following Schmitt et al. [16], zebra-only herds comprised a
group of zebra that fed within six body lengths of their nearest
conspecific (approx. 12 m), while mixed-species herds contained
at least one heterospecific individual within 12 m of a zebra. We
limited our data collection to single- and mixed-species herds
that comprised only adult individuals. All vigilance observations
started when a focal zebra had its head down and was grazing.
We considered a zebra vigilant when it lifted its head above graz-
ing height and scanned for predators, or focused its gaze and
actively listened (as per [7]). Within a herd, we did not record
data from the same individual twice. For each herd, we sampled
more than 75% of herd members.
(a) Anti-predator behaviour
The type and quality of social information gleaned from herd
mates plays an important role in herding behaviour. Thus, to
determine the efficacy of mixed-species herding as a function
of predation risk, we compared zebra vigilance across different
predation risk and herd compositions (i.e. single- versus
mixed-species herds). To determine vigilance behaviour, we
observed a zebra for 3 min and recorded: (1) the number of vig-
ilance events, (2) total time vigilant, (3) the type of each vigilance
event (i.e. general or focused scan [16]) and (4) the amount of
time devoted to general versus focused scans (see electronic sup-
plementary material for sample sizes). As per Schmitt et al. [16],
we defined a general scan as a zebra scanning without fixing its
attention (vison or ears) in a particular direction. A focused scan
comprised a zebra staring in a fixed direction, with its ears
pricked, either to another herd mate (i.e. zebra or other herding
species) or out to the environment. Finally, we compared zebra
herd size for single- and mixed-species herds in both low- and
high-predation risk areas.

Focal zebra were randomly selected and anti-predator data
were collected sequentially from different individuals. Because
we sampled the majority of the herd, there is some variation in
the spatial location of each zebra within the herd (centre versus
edge), which can affect anti-predator responses [33]. However,
for the analyses (see below), we created a herd average to rep-
resent perceived risk at the herd level. Finally, throughout the
study period, the same observer recorded and scored zebra
anti-predator responses directly in the field. We sampled both
single- and mixed-species herd types in all reserves (HiP:
mixed: n=30 herds, zebra-only: n=58 herds; Kruger: mixed: n
= 12 herds, zebra-only: n= 12 herds; Ithala: mixed: n=15 herds,
zebra-only: n=15 herds; Isimangaliso: mixed: n=8 herds,
zebra-only: n=8 herds; for detailed sample sizes, see electronic
supplementary material).
(b) Time lost and the feeding cost of vigilance
To quantify the implications of mixed-species herding to time
invested in vigilance by zebra, we created a function that rep-
resents the percentage investment cost of vigilance. Because we
statistically controlled for herd size in the analyses that generated
the empirical data used in this function, our projected values
reflect the costs associated with anti-predator behaviour (i.e. vig-
ilance) and not costs associated with social behaviour (i.e.
competition). For this function, we only used time spent by
zebra conducting a focused scan, because during these scans,
zebra cease feeding (i.e. these behaviours are mutually exclusive).
We extended this function to explore how the cost of vigilance
may influence zebra feeding behaviour. To do this, we used
empirical data on zebra foraging behaviour (i.e. bite rates) col-
lected by [34]. Using their estimate of the time taken for a
single bite, and assuming all bites are of equal quality, we were
able to calculate the difference (due to vigilance) in the daily
number of bites that zebra take within each herd type within a
risk category. These differences in the number of bites and feed-
ing time, reflect the benefits of mixed-species herding. See
electronic supplementary material for detailed calculations.

(c) Data analysis
(i) Number of vigilance events and time spent vigilant
Prior to analyses, we calculated mean individual vigilance per
herd and used herds as replicates to avoid possible pseudorepli-
cation after testing for and finding no herd effect (we therefore
could pool data on individuals to create a herd average). We
assessed, using two separate models, how herding behaviour
(single- versus mixed-species) and predation risk (high versus
low) influenced: (1) the number of vigilance events and (2)
the mean duration individuals within a herd were vigilant per
3min observation. For both models, we used a generalized
linear model with a Tweedie distribution and log-link function.
We used a Tweedie distribution because our dataset contained
a range of zero and positive values [35]. For each model, we
included ‘herd type’ (mixed species versus single species) and
‘risk’ (high or low) as the main factors as well as their interaction.
To control for variation in herd size as well as for a site effect, we
used number of zebra, number of non-zebra ungulates, and site
as covariates. For both the mean duration of vigilance and the
number of vigilance events models, the number of non-zebra
ungulates was non-significant and thus removed from the model.

In our study, we found a mixed-species effect (i.e. lower vig-
ilance levels in mixed-species herds; see Results). To quantify the
degree to which mixed-species herding can reduce vigilance
behaviours of zebra and modify landscapes of perceived risk,
we assessed whether the average time spent vigilant by zebra
in a mixed-species herd in a high-risk area was comparable to
the average time spent vigilant by zebra in single-species herds
in low-risk areas. To do this, we used a generalized linear
model (Tweedie distribution and log-link function). We included
the average time spent vigilant by zebra as the dependent vari-
able and herd type as the independent variable. To control for
variation in herd size as well as for a site effect, we used
number of zebra, number of non-zebra ungulates, and site as
covariates in the models. Site was non-significant and thus
removed from the model.

(ii) General versus focused scans
We assessed how herd type and predation risk influenced the
duration and proportional use of focused scans (mutually exclu-
sive from other behaviours and therefore costlier to zebra). We
included duration as the dependent variable in a generalized
linear model (Gamma distribution and log-link function) with
herd type, predation risk, and their interaction as independent



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

287:20192555

4
variables. To determine the proportional use of focused scans
across treatments, we calculated the proportion of focused
scans for each herd and transformed these values using an arc-
sine square root transformation for proportional data. The
transformed values for the proportions of focused scans were
then used as the dependent variable in a general linear model.
Herd type, risk and their interaction were included as indepen-
dent variables. In both models, we included the number of
zebra, number of non-zebra ungulates, and site as covariates.
The number of non-zebra ungulates was non-significant and
thus removed from the model. For the second model, the
number of zebra and number of non-zebra ungulates were
non-significant and removed from the model. Data were back-
transformed for graphical representation.

(iii) Herd size
To determine the mechanism by which zebra reduce vigilance
in high- and low-risk areas, we examined their herding behav-
iour, specifically the herd sizes that are maintained in high-
and low-risk areas in mixed- and single-species herds. First,
we ran a generalized linear model (gamma distribution and
log-link function) with total herd size as the dependent variable
with herd type, risk, and their interaction as independent vari-
ables. We initially included site as a covariate, but found that it
was non-significant, and therefore, removed it from the model.
We then ran a generalized linear model (gamma distribution
and log-link function) that focused on the number of zebra
only in a herd as the dependent variable, with herd type,
risk, and their interaction as the main variables. We initially
included site as a covariate, but found that it was non-signifi-
cant, and therefore, removed it from the model. Upon finding
that zebra maintain a constant number of conspecifics in both
single- and mixed-species herds in high- and low-risk areas
(see Results), we explored how this might vary across seasons,
and thus changes in resource availability (see electronic sup-
plementary material, methods for more details). All data were
analysed and back-transformed for graphical representation
using SPSS v. 25.
3. Results
(a) Antipredator behaviour
Mixed-species herding and predation risk influenced the
number of vigilance events, the mean duration individuals
within a herd were vigilant, the proportional use of general
versus focused scans and, finally, the proportion of time
devoted to general versus focused scans. Zebra in mixed-
species herds conducted approximately 48% fewer vigilance
events (χ2 = 20.518, p<0.0001; figure 1a) and spent approxi-
mately 55% less time being vigilant compared with zebra in
single-species herds (χ2 = 35.171, p<0.001; figure 1b). In
addition, zebra in mixed-species herds not only conducted
proportionally fewer focused scans (F1,149 = 19.624, p<0.001;
figure 1c) but those that they did make were approximately
20% shorter than zebra in single-species herds (χ2 = 6.398,
p= 0.011; figure 1d ).

Zebra in low-risk areas conducted approximately 61%
fewer vigilant events (χ2 = 44.746, p<0.001; figure 1a) and
spent approximately 64% less time being vigilant compared
with zebra in high-risk areas (χ2 = 59.500, p<0.001; figure 1b).
Furthermore, zebra in low-risk areas also had proportionally
fewer focused scans (F1,149 = 4.174, p=0.043; figure 1c)
of shorter duration compared with high risk-areas (χ2 =
29.826, p<0.001; figure 1d ). For all the above analyses, we
found non-significant interaction effects between risk and
herd type (i.e. the response slopes were homogeneous). This
indicates that the observed differences in all the vigilance
metrics (interaction terms for: number of vigilance events: χ2

= 0.165, p=0.685; the time spent vigilant: χ2 = 1.211, p=0.271;
the proportional use: F1,149 = 0.066, p=0.797, and duration of
focused versus general scans: χ2 = 3.333, p=0.068) between
single- and mixed-species herds were independent of risk
(i.e. mixed-species herding reduced zebra anti-predator beha-
viours by the same amount at both levels of predation risk).

Finally, with respect to the mean duration individuals
within a herd were vigilant, mixed-species herding essen-
tially levels the landscape of fear. As such, there was no
difference in the time that zebra spent vigilant in mixed-
species herds in high-risk areas compared with single-species
herds in low-risk areas (χ2 = 0.001, p=0.985; figure 1b). Zebra
in mixed-species herds in high-risk areas spent 17.45 s out of
3 min (approx. 10% of the time) being vigilant (down from
approx. 20% of time spent vigilant out of 3 min in zebra-
only herds at high risk), whereas zebra in single-species
herds in low-risk areas spent 17.53 s out of 3 min (approx.
10% of the time) being vigilant.

(b) Herd size
The only factor that influenced herd size was whether
the herd was a single- or mixed-species herd (χ2 = 91.559,
p< 0.001). Neither predation risk, nor the interaction between
predation risk and herd type influenced herd size (predation
risk: χ2 = 1.316, p=0.251; interaction term: χ2 = 1.750, p=0.186).
Mixed-species herds were greater than 2 times larger than
single-species herds in both high- and low-risk areas
(figure 2a). However, further analyses revealed that there
was no significant difference in the average number of
zebra found in single- and mixed-species herds (χ2 = 0.066,
p=0.797; figure 2b), or between the different predation risk
areas (χ2 = 0.943, p=0.332; figure 2b). The lack of difference
in zebra numbers between herd types can be inferred
across both predation risks (non-significant interaction: χ2 =
1.312, p=0.252; figure 2b). Finally, when we explored how
number of conspecifics varied across seasons in a high-risk
area, we found that zebra maintained the same number of
conspecifics (approx. 6) in both herd types irrespective of
season (non-significant interaction: χ2 = 2.480, p=0.115).

(c) Time lost and feeding cost of vigilance
Our model showed that the percentage investment cost of
vigilance decreased by approximately 60% and 41% in
mixed-species herds in low- and high-risk areas, respectively
(figure 3). This potentially allows zebra to invest more time
in other activities besides costly anti-predator behaviour.
Furthermore, our model predicts that mixed-species herding
in high-risk areas reduced the percentage investment cost of
vigilance to a similar level obtained by zebra herding in
single-species herds in areas with low levels of predation risk.

We also estimate that zebra in mixed-species herds are
able to take more bites per day than zebra in single-species
herd while foraging. Specifically, we found the difference in
the number of bites between herd types to be approximately
917 bites per day in low-risk areas compared with approxi-
mately 1192 bites per day in high-risk areas. For zebra in
single-species herds to achieve the same number of bites as
zebra in mixed-species herds, they would have to feed for
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approximately an additional 35 min in low-risk areas, and
51 min in high-risk areas, per day.

4. Discussion
African savannas consist of diverse predator and prey guilds
[36,37]. This diversity plays an important role in determining
the effect that predators have on prey populations [38]. We
found that the removal of a main predator (i.e. lions) altered
the anti-predator behaviour of their common prey species
(i.e. zebra). However, the eradication of the top predator did
not completely eliminate the perception of risk [23]. Instead,
we found that zebra still maintained, and benefitted from,
mixed-species herding under low predation risk scenarios.
Thus, we speculate that top-down control by secondary preda-
tors still elicited a fear response from zebra, even when the
main predator of zebra was removed. Thus, in predator-
diverse systems, secondary predators (e.g. hyena and leopard)
appear to still elicit important top-down regulation on prey
species and thereby uphold a landscape of fear, albeit it
perhaps with lower peaks and shallower valleys of perceived
predation risk (e.g. the multipredator hypothesis [39]).

It is plausible that we did not see a complete collapse of
anti-predator behaviour under low predation risk because
prey anti-predator responses may be innate and evolutionarily
ingrained so that the total loss of anti-predator behaviour
never occurs (see [40]). If this was the case, we would expect
similar levels of anti-predator behaviours between single-
and mixed-species herds under low levels of risk. However,
in our study, we observed a mixed-species effect even under
low levels of predation risk (i.e. there are anti-predator benefits
of mixed-species herding). In addition to lions, secondary pre-
dators are also present at all of our study sites. Secondary
predators (e.g. leopard and hyena) are typically not the main
predators of zebra; however, they have been shown to con-
sume zebra fairly regularly [28,29,31]. Thus, when exposed
to secondary predators, zebra still exhibited anti-predator
responses and benefitted from mixed-species herding. The
difference in the magnitude of anti-predator responses of
zebra as well as the estimated feeding costs between the two
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risk categories can be attributed to the greater predatory risk
imposed by lion compared with secondary predators in
low-risk areas [13]. However, by maintaining at least some
top-down control on prey species, it appears that secondary
predators are important in regulating ecosystem structure,
functioning and resilience [13,41].

For predator detection, we were mainly interested in
focussed scans because this vigilance event was mutually
exclusive from feeding. Both mixed-species herding and pre-
dation risk influenced the duration of these focussed scans.
Although, we did not find a significant interaction (p=
0.068) between predation risk and herd type, it seems that
under high levels of risk, zebra in both herd types conducted
focussed scans of similar duration (figure 1d ), albeit in differ-
ent frequencies (figure 1c). Under high levels of risk, zebra in
both herd types may have conducted focussed scans of simi-
lar duration because that is what is needed to be able to
detect cryptic, ambush predators (lion) in the landscape.
However, when we combined the frequency and duration
of focussed scans into a single metric (percentage investment
cost; figure 3), we ultimately found that mixed-species herd-
ing lowered predation risk.

Using empirical data, where we statistically controlled for
herd size (effectively removing the costs associated with
increased herd size and competition), we were able to esti-
mate the percentage investment cost of vigilance as a
function of grouping behaviour. From the function we cre-
ated, we found that mixed-species herding in high-risk
areas reduced the cost of investing in vigilance by approxi-
mately 41%. Somewhat unexpectedly, we further found that
increases in mixed-herding also decreased percentage invest-
ment in costly vigilance under low-levels of predation risk
(approx. 60%). Thus, when zebra formed mixed-species
herds, they invested less in costly vigilance, thereby, allowing
more time to be allocated to other activities such as feeding.
Barnier et al. [18] found that zebra obtained a low-quality
diet when foraging under predation risk by lions. One of
the mechanisms driving this nutritional cost is an increase
in intense vigilance scans as a result of lions. Increased vigi-
lance reduces bite rates and ultimately food intake rates [42].
When we estimated the cost of vigilance in terms of feeding,
we found that zebra in single-species herds need to feed
approximately 35 min more per day in low-risk areas and
approximately 51 min more in high-risk areas to achieve the
same number of bites as zebra in mixed-species herds.
Thus, when zebra form single-species herds, it is plausible
that the cost of investing more time in vigilance and less
time feeding compared with zebra in mixed species herds,
could have fitness consequences [42,43]. Furthermore, Gil
et al. [19] used dynamic state variable modelling to elucidate
the effects of social information on grouping behaviour and
individual fitness. Under all modelling scenarios, they
found that social information and mixed-species herding
were not detrimental to individual fitness because the fitness
benefits always exceeded the potential competition costs.

In less complex systems (i.e. systems with single predator–
prey pairs), the removal of top predators results in a break-
down of anti-predator responses with strong cascading
effects [3,44]. However, in African systems, the diverse preda-
tor and prey guilds results in higher trophic redundancy (i.e.
the number of species at each trophic level). With an increase
in trophic redundancy, there is a greater chance that the effects
of removing a given species, in our case lion, on the dynamics
of other species will be compensated for by the effects of other
species with links to the same prey [45]. Lion and secondary
predators, such as leopard, have similar hunting styles (both
are sit-and-pursue predators), which has been shown for
some prey species to be more important in evaluating risk
than the relative predation threat of a specific predator (i.e.
threat-sensitive predator avoidance hypothesis [36]). The
redundancy provided by the secondary predators in our
system, and the overlap in prey preference between lion and
these secondary predators, prevented the removal of the
main predator in our system (lion) from resulting in a com-
plete collapse of anti-predator behaviour shown by zebra.
This compensation from species redundancy is counter to pre-
dictions of simple models of intra-guild predation (IGP),
where removal of a top predator should theoretically have
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cascading effects to lower trophic levels. Thus, the relationship
between food-web complexity and the stability of ecosystems
is important when considering the outcome of predator
removal on prey species [46,47]. However, these cascading
effects can be precluded, for example, by structural heterogen-
eity of the environment [e.g. 48]. Structural heterogeneity
can influence the success of the contrasting hunting styles
(ambush versus cursorial) between apex and secondary
predators (see [13] and references therein) as well as the ability
for prey species to detect and avoid predators [49,50].

Linking trophic level redundancy and social information
of prey species provides a powerful tool to understand com-
munity-level interactions in response to predation risk. A
diverse prey guild has potentially different sensory abilities
with certain species providing more accurate information
about predation risk [15,16]. Thus, improved social infor-
mation about predation risk could be an important driver
of mixed-species herding and individual fitness of herd
members [7,19]. Leuthold & Leuthold [51] found that zebra
formed mixed-species herds more frequently than expected
by chance. Furthermore, Ireland & Ruxton [52] hypothesize
that zebra form the nucleus of mixed-species herds, which
is supported by the social networking analyses of Kiffner
et al. [24]. The effect of mixed-species herding in reducing
predation risk is well documented [7,53]. However, we
extend the effects of mixed-species herding in reducing
predation risk by quantifying the degree to which mixed-
species herding can reduce perceived predation risk across
different levels of predation risk. We found that mixed-
species herding effectively levels the landscape of fear for
zebra that is created by lions, meaning that when zebra
form mixed-species herds in areas of high predation risk,
they are able to achieve similar levels of anti-predator
vigilance that zebra herding with only conspecifics have in
areas of low predation risk.

Despite the benefits obtained from mixed-species
herding, grouping behaviour does not come without its
costs—primarily increased competition [11]. We found that
mixed-species herds were larger than single-species herds,
potentially leading to competitive effects (which we did not
measure) outweighing the benefits of reduced anti-predator
behaviours that we observed. However, we found that the
number of zebra remained constant (approx. 6 individuals)
across all herd categories (i.e. mixed versus single in high-
and low-risk areas). Moreover, when we examined the
mean number of zebra in single- and mixed-species herds
in a high-risk area across the seasonal cycle (i.e. wet and
dry season), which reflects dramatic changes in resource
availability, we found that the number of zebra in a herd
remained consistent at an average of six individuals. Thus,
the increase in total herd size that we observed in mixed-
species herds was a result of zebra herding with heterospeci-
fics. Zebra do have the option of forming larger conspecific
aggregations (sometimes up to 400 individuals [54]), but by
selecting for heterospecifics, rather than conspecifics, zebra
simultaneously increase detection abilities while reducing
the potential for competition for mates and food resources
(lower niche overlap between heterospecifics). Thus, zebra
are not merely balancing the competition-information trade-
off, but by selecting for quality of herd member rather than
quantity of herd members, they are maximizing the benefits
of mixed-species herding while reducing potential costs,
which is consistent with the information quality–competition
trade-off [19,21]. Additionally, we found that mixed-species
herd sizes were similar in both low and high-risk areas
(approx. 18 individuals). Total herd size may be limited by
the potential for larger herds to be more easily detected by
predators in the landscape [55].

Our finding that zebra maintain an average of six individ-
uals in a herd is consistent with average herd sizes of zebra
found in other studies (table 4.1. in [56]) and is probably
the number of females in a harem that a dominant male
can suitably defend against other male competitors [57]. Ulti-
mately, the diversity of the prey trophic guild provides zebra
with multiple opportunities to form mixed-species herds, and
thus, reduce the strength of predator-induced risk effects.
This reduction in the strength of predator impacts have the
potential to cause fear-based niche shifts in gregarious
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herbivore species [58], whereby these grouping associations
allow gregarious prey species to forage in riskier areas, poten-
tially explaining why strong predator-induced cascading
effects are often not observed in complex systems (e.g. [59]).

We used zebra as our focal species to highlight the
benefits of using social information to reduce predation
risk. However, these benefits are likely to also extend to het-
erospecifics, which herd with zebra (as long as they share a
common predator). For example, Meise et al. [14] used
weighted directed affinity networks to reveal how different
species in African savannas prefer to herd with specific
species. The degree to which a specific species benefits and
the directionality of these benefits depends on the vulner-
ability of the herding partner to predators as well as their
detection abilities [14]. Although we showed that zebra ben-
efitted from herding with species such as wildebeest, it is
possible that wildebeest could be benefitting more from herd-
ing with zebra because zebra have been shown to be reliable
detectors of predation risk [14,15].

In our study, for mixed-species herds, there is a positive
relationship between herd size and reduced investment to
costly vigilance as well as an increase in the time available
for feeding (e.g. Allee effects [60]) compared with single-
species herds. This further demonstrates the importance of
grouping as an option within the arsenal of anti-predator
responses of prey species. Moreover, grouping benefits
extend beyond regulating populations (e.g. improved survi-
vorship) when information about predators spans multiple
species, thereby influencing community-level interactions.
Ultimately, our findings suggest that mixed-species herding
can effectively reduce the perceived risk of predation,
whereby it essentially removes the influence of the primary
predator on the anti-predator responses of prey species.
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