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Quantifying animal movement is a central component of ecological inquiry. Movement 
patterns provide insights into how animals make habitat decisions in pursuit of their 
life-history requirements. Within this context, animals are expected to modulate 
their movement when navigating landscape complexities like steep or uneven slopes. 
However, the analytical tendency to predict animal movement as a function of bivari-
ate (x, y) telemetry data (i.e. 2D methods) excludes such complexities and presumes 
that the landscapes over which this movement occurs are completely flat. Failure to 
consider vertical dimensionality may inhibit quantification and interpretation of 
animal behaviors, such as outputs of hidden Markov models (HMMs) built upon 
geometric measurements of animal movement like step length and turning angle. To 
explore the analytical consequences of this assumption, we utilized a dataset of GPS 
collared pumas Puma concolor in the Santa Cruz mountains of central California. We 
fit HMMs using traditional 2D step lengths and turning angles and compared them 
to HMMs built upon movement geometries in which we incorporated vertical dimen-
sionality (i.e. 2D+). We then used a combination of quantitative inspection of model 
outputs and visual evaluation in 3D rendering software to understand what new states 
and biological interpretations can be facilitated by using 2D+ data. We found that 
2D+ HMMs outperformed 2D HMMs in their ability to explain variation in vertical 
dimensionality. Furthermore, 2D+ models were able to isolate distinctive behavioral 
states associated with vertical dimensionality, such as movements on and off ridgelines. 
Our results show that 2D+ techniques enable researchers to directly investigate varia-
tion in animal movement and behavioral states across complex landscapes. We discuss 
the implications of our results for future study of animal behavior and energetics as 
well as illustrate how our methods can be tractably incorporated into HMMs to enable 
researchers to gain greater insights into animal movement ecology.
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Introduction

The field of movement ecology is centered around quantify-
ing and predicting the complex ways in which animals use 
their environments to satisfy their life history requirements 
(Nathan et al. 2008). The mechanisms that underlie such 
movement decisions depend on intrinsic conditions of the 
individual animals, as well as the extrinsic biotic and abi-
otic conditions in the environment (Karasov and Rio 2007, 
Sibly et al. 2013). Herein, animal movement is representative 
of dynamic tradeoff decisions that have important implica-
tions for survival and reproduction (Hobbs 1989, Benson 
and Chamberlain 2007, Attum et al. 2013). Consequently, 
animals are often assumed to make movement decisions 
that maximize resource intakes while minimizing resource 
expenditures (Pyke 1984, Fagan et al. 2013). Thus, animals 
make movement decisions that dynamically consider the 
availability of resources, prevailing environmental condi-
tions, inter- and intra-species encounters and anthropogenic 
activity (Kerk et al. 2015, Wilmers et al. 2017, Evans et al. 
2020, Montgomery et al. 2020). While animal movement 
processes are dynamic and complex, so too should be the 
analytical techniques built and deployed to analyze them 
(Hebblewhite and Haydon 2010, Montgomery et al. 2010, 
2011, Heit et al. 2021).

Coupled growth in remote sensing technologies and 
quantitative movement modeling has facilitated studies of 
animal movement ecology at increasingly fine spatio–tem-
poral resolutions (Hazel 2009, Benson 2010). Over time, 
models fit to describe animal movement have been refined 
to account for spatial autocorrelation, sample size issues and 
locational error in telemetry systems (Seaman et al. 1999, 
Montgomery et al. 2011, Fleming et al. 2014). Despite these 
efforts, vertical dimensionality remains an important source 
of bias that, comparatively, has received much less attention 
in animal movement modeling and home range estimation 
(Belant et al. 2012, Chandler et al. 2020, Heit et al. 2021). 
Vertical dimensionality refers to the vertical variation in the 
physical structure of landscapes (e.g. topography, bathymetry 
or anthropogenic features; Montgomery et al. 2020). While 
we may consider the physical space for animal movement to 
be three-dimensional (3D), for terrestrial animals we prefer 
to categorize these landscapes as 2D+. We do this because 
while we can measure an animals position using three axes (x, 
y, z), terrestrial animal movement is bound to landscape sur-
faces via gravity. Without the capability to fly, swim or bur-
row, terrestrial animal movement is distinct as it takes place 
not in a volume but on a plane that is bent into the shapes 
of mountains and valleys (Milne 1997, Tracey et al. 2014). 
These 2D+ animal movements are important given that navi-
gating landscapes with higher amounts of vertical dimen-
sionality requires greater expenditure of energy in pursuit of 
resources (Wakelyn 1987, Pe’er et al. 2006, Birn-Jeffery and 
Higham 2014, Dunford et al. 2020). Vertical dimensionality 
has also been found to play an important role in mitigating 
inter- and intra-species interactions, whether they be affili-
ative, competitive or predatory in nature (Stankowich and 

Coss 2007, Farhadinia et al. 2019). Consequently, animal 
movement models built using only 2D movement data from 
telemetry tracking may mischaracterize movement behaviors 
and their subsequent energetic consequences (Jenness 2004, 
Tracey et al. 2014, Dunford et al. 2020).

Telemetry is a predominate tool used to document ani-
mal movement (Cagnacci et al. 2010, Hebblewhite and 
Haydon 2010). The data returned from telemetry systems 
typically consist of bivariate coordinate data representing the 
location of the animal research subject across longitude (x) 
and latitude (y) dimensions (i.e. 2D). The capability exists 
for a third dimension: change in elevation (z) to be incor-
porated, either via altitudinal measurements from telemetry 
equipment or data extracted from digital elevation models 
(DEMs) but these data are not often included in the func-
tions used to measure animal movement (McClintock and 
Michelot 2018, Signer et al. 2019). Hidden Markov models 
(HMMs) are one tool that has been developed to use telem-
etry data to quantify animal behavioral states (Patterson et al. 
2009, Langrock et al. 2012, McClintock et al. 2014). Herein, 
states are inferred from geometric measurements of animal 
movement paths including the distance traveled (step length) 
and change in bearing (turning angle; Langrock et al. 2012, 
Zucchini et al. 2017). In this way, an ‘encamped’ or ‘rest-
ing’ state may be associated with relatively short mean step 
lengths and unconcentrated turning angles (i.e. undirected 
movement), while an ‘exploratory’ or ‘transit’ state may be 
inferred from longer step lengths and concentrated turning 
angles (i.e. more directed movement).

We hypothesized that the nature of these model outputs, 
however, should be expected to change if the underlying verti-
cal dimensionality is considered. For example, what may look 
like a short step length in a horizontal direction from a 2D 
perspective may be representative of a longer energetically-
costly climbing movement in reality (Fig. 1). The disparity 
between 2D and 2D+ steps can also be expected to increase 
with higher degrees of vertical dimensionality. Thus, climbing 
and descent movement steps may be consistently underesti-
mated in areas with high vertical dimensionality. We expect, 
that by using variables in HMMs that capture 2D+ move-
ment, it is possible to distinguish between movement phases 
occurring in different degrees of vertical dimensionality with 
different distributions of vertical turning angles, where hori-
zontal movement alone would not have been enough to iden-
tify such differences. To test this hypothesis, we fit HMMs 
to five-minute GPS movement data of pumas Puma concolor 
in California using the traditional 2D approaches and com-
pared the outputs to the 2D+ HMMs in which we directly 
incorporated vertical dimensionality.

Methods

Hypothesis testing approach

To test our hypothesis that 2D+ HMMs can elucidate 
complex animal movements and improve the biological 
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interpretation of fitted states we developed a two-phase mod-
eling approach – one to determine how the incorporation of 
2D+ data affects the numerical outputs of HMMs, and the 
second to explore how biological interpretations of HMM 
states can change between 2D and 2D+ based cases. In the 
first phase, we fit and compared HMMs based upon 2D and 
2D+ cases of our data. The 2D case was based upon the tra-
ditional input data of horizontal step length, and horizontal 
turning angle. The 2D+ case took the 2D case and replaced 
2D step length with 2D+ step length, and added the vertical 
turning angle (Fig. 1). In this phase we were most interested 
in the effect of including 2D+ variables on the number of 
states supported by the data. In the second phase, we used 
linear regression models to determine whether 2D+ states 
were more significantly associated with variation in vertical 
dimensionality. Additionally, we used 3D rendering software 
to visualize fitted states to explore how 2D+ models altered 

the biological interpretations of HMMs. We applied this 
two-phased modeling approach to test our hypothesis using 
the movement of pumas in California as a case study.

Study area

We positioned our study in a ~1700-km2 region of the Santa 
Cruz Mountains of central California consisting of a diverse 
matrix of forested patches and open grasslands interspersed 
among exurban and suburban development between the 
Pacific Ocean to the west, and the cities of Santa Cruz and San 
Jose, CA to the south and northeast respectively (Fig. 2). The 
density of human habitation in the study area ranges from 0 
to 1500 buildings km–2 (Suraci et al. 2020). The forests in the 
area predominately consist of redwood Sequoia sempervirens 
and Douglas fir Pseudotsuga menziesii. Elevation in the study 
area, characterized by a 3.4 m NASA ASTER digital eleva-
tion model (U.S./Japan ASTER Science Team 2020) ranges 
from sea level to 1155 m with a median terrain ruggedness 
index (TRI) of 2.57 (range 0–329; Riley et al. 1999; Fig. 2).

Pumas were captured using tracking hounds or cage traps 
as described in Wilmers et al. (2013). Individual pumas 
were immobilized using Telazol (Fort Dodge Laboratories) 
and all capture and handling protocols were approved by 
the Institutional Animal Care and Use Committee of the 
University of California – Santa Cruz (Protocol WilmC1612) 
and the California Department of Fish and Wildlife (Permit 
SC-11968). We fit each puma with a GPS collar that recorded 
locations at five-minute time intervals (GPS Plus, Vectronics 
Aerospace; Suraci et al. 2020).

Multi-dimensional movement path geometry and 
covariates

To represent vertical dimensionality in our study area we cal-
culated TRI values for each raster cell in the DEM encom-
passing the extent of our puma dataset. TRI is a function of 
the sum total of elevation change between raster cells and 
their eight neighboring cells, giving an index of how com-
plex the landscape terrain is (Riley et al. 1999). We made 
these calculations using the 'spatialEco' package in R statisti-
cal software and then extracted the TRI value for each puma 
location (Evans and Ram 2015, www.r-project.org).

We prepared two input data streams based on movement 
path geometry for our 2D HMMs. First, we calculated hori-
zontal step length as the vectoral distance between succes-
sive locations, and horizontal turning angle as the horizontal 
change in bearing between locations. Next, we prepared three 
input data streams for the 2D+ HMMs. This included the 
same horizontal turning angle as the 2D models, but addi-
tionally we calculated a new 2D+ step length as the distance 
between successive locations, accounting for changes in ele-
vation indicative of vertical dimensionality for pumas, and a 
vertical turning angle defined as the vertical change in bearing 
(Fig. 1). We modeled all step length parameters with a gamma 
distribution and the angular measures using a von Mises dis-
tribution (Zucchini et al. 2017). We calculated these metrics 

Figure 1. A comparison between two-dimensional (2D) movement 
geometry and movement geometry that accounts for vertical 
dimensionality beyond a 2D plane (2D+). Successive 2D move-
ment steps can be calculated as the resultant vector of changes in x 
and y coordinates (a), while 2D+ movment steps also take changes 
in elevation resulting from increased vertical dimensionality into 
account (b). Greek letters alpha and beta represent horizontal and 
vertical turning angles respectively. Dashed arrow shown in teal rep-
resents the trajectory of the previous movement step. Changes in x 
and y represent changes in latitude and longitude.
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using the 'momentuHMM' package in R (McClintock and 
Michelot 2018, www.r-project.org).

Hidden Markov models

First, we fit population-level HMMs at two, three, four and 
five behavioral states for both the 2D and 2D+ data cases, for 
a total of eight testable models. The choice to use this amount 
of states was based on prior research on puma movement 
dynamics we conducted in this system (Dunford et al. 2020). 
To examine how the fitted behavioral states changed with 
vertical dimensionality, we included TRI as a spatial covariate 
on the state transition probabilities in all these models. As 
'momentuHMM' uses numerical optimization of the likeli-
hood function to fit the HMMs, the choice of appropriate 
starting values is imperative (Langrock et al. 2012, Schliehe-
Diecks et al. 2012, Pohle et al. 2017). For each of our eight 
testable models we tested 50 sets of starting values sampled 
from uniform distributions with bounds chosen based on the 
empirical distributions of step lengths and turning angles. 
From these, we retained the model with the lowest negative 
log-likelihood. We evaluated our models using a combination 
of Akaike’s information criterion (AIC), and model pseudo-
residuals (Costa and De Angelis 2010, Schliehe-Diecks et al. 
2012), and the distributions showing the relative likelihood 
of an animal being in a state given values of a spatial covari-
ate, also known as stationary state distributions (Costa and 
De Angelis 2010, Langrock et al. 2012).

In pursuit of phase two of our hypothesis testing approach, 
we inspected the stationary state distributions. Next, we used 
the Viterbi algorithm which uses the fitted models to pre-
dict a behavioral state for each puma location and repeated 

this process for the eight testable HMMs across both the 2D 
and 2D+ classes. We then quantified the relationship between 
the predicted state sequence of each HMM to TRI using an 
ANOVA. We considered the best-performing and most real-
istic models to be those with high adjusted R2, low standard 
deviations on state parameters and low AIC values, which has 
been shown to be a reliable test for HMMs (Costa and De 
Angelis 2010). Finally, we visually explored random subsets 
of the predicted state sequences using a 3D rendering of a 
digital elevation model in QGIS (QGIS Association 2021). 
This allowed us to verify the distinctions in model output 
between climbing and non-climbing puma movements

Results

Between 15 May 2015 and 22 August 2017, we GPS-tracked 
eight adult pumas (four males, four females). In total, there 
were 151 932 individual GPS locations (range: 14 166–22 
434 per individual, μ: 18 991) returned from our telemetry 
system. Each puma was tracked for between 52 and 79 days 
per individual animal (μ = 66.9, SD = 10.6 days, Table 1). 
We fit a total of eight hierarchical HMMs consisting of two, 
three, four and five-state models across both the 2D and 2D+ 
classes (Fig. 3).

HMM parameter estimates (first phase)

In both the 2D and 2D+ cases, the two-state model identified 
a short-range movement state and a long-range movement 
state, and the three-state model identified an encamped state 
(Table 2). In the 2D+ case, we did find variation in vertical 

Figure 2. Map of GPS locations from eight collared pumas Puma concolor captured and monitored in the Santa Cruz Mountains of 
California, USA from July 2015 to August 2017. Puma movement occurred between the urban areas of San Jose and Santa Cruz, CA. 
Colors of locations correspond to different individual pumas. Locations are overlaid on a map of terrain ruggedness index (TRI) values 
showing a high diversity of vertical dimensionality.
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Table 1. Details of pumas Puma concolor captured and fixed with GPS collars in the Santa Cruz Mountains of California, USA from July 
2015 to August 2017. Identification number, sex, date of first location, date of last location, number of days, number of locations, range of 
elevation values and mean elevation are given for each individual puma.

ID Sex First fix Last fix Days Locations Elev. range (m) Mean elev. (m)

80 F 3 Jun 2017 21 Aug 2017 79 22 577 13–614 298
10 F 20 Jul 2016 21 Sep 2016 63 18 084 90–786 346
19 F 15 May 2015 15 Jul 2015 61 17 506 181–785 337
81 F 3 Jun 2017 21 Aug 2017 79 22 312 23–579 341
83 M 3 Jun 2017 21 Aug 2017 79 22 434 13–805 518
26 M 15 May 2015 15 Jul 2015 61 17 402 103–1056 552
66 M 19 Oct 2016 10 Dec 2016 52 14 166 110–1057 479
36 M 15 May 2015 15 Jul 2015 61 17 451 14–804 321

Figure 3. Example distributions of input data streams for hidden Markov models of puma Puma concolor the Santa Cruz Mountains of 
California, USA from July 2015 to August 2017. The first panel (step length) can refer both to both 2D and 2D+ (with vertical dimension-
ality) step length, though values for 2D+ step length would be higher than 2D step lengths in reality.
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turning angles between states in both the two- and three-state 
HMMs, indicating that the long-range movements in both 
these models were on flatter slopes compared to the short-
range movements. Among the four-state HMMs in both the 
2D and 2D+ cases, the first two states corresponded to short 
step lengths and unconcentrated turning angles, but the dis-
tributions of each state were overlapping (Table 2). However, 
the 2D+ model had a larger variation between vertical turn-
ing angle concentration among these states, identifying that 
these states corresponded to similar step distances, but on dif-
fering degrees of incline or decline. The three- and four-state 
HMMs both depicted a short-range movement state and a 
long-range movement state (Table 2). It was between these 
states that a pronounced deviation between vertical turning 
angle concentrations (4.89–39.83) became evident indicat-
ing a large difference in the vertical dimensionality of areas 
in which these behaviors are exhibited. In both the 2D and 
2D+ five-state HMMs there were three states associated with 
moderate-range movements, which had overlapping distribu-
tions (Table 2). However, in the 2D+ five-state HMM, the 
three moderate-range movement states exhibited consider-
able variation in vertical turning angle (range 4.09–292.71) 
indicating that the third state corresponded to short range 
movements on flat slopes, while the fourth state represented 
short range movements on variable slopes.

Vertical dimensionality (second phase)

The stationary state distributions for each HMM showed that 
the behavioral states across these models had different relation-
ships with vertical dimensionality. In the two-state model in 
both cases, the lower activity state was associated with increases 
in TRI. In the three and four-state models, this changed and 
variation in TRI was captured by a moderate activity state. 
However, in the four-state model, moderate activity states 
were distinct from each other only in their relationship to 
TRI, as the step length and horizontal turning angle param-
eters were very similar (Fig. 4). This was supported by a larger 
variation in vertical turning angle between these states in the 
2D+ case. The 2D+ HMMs also had visibly smaller 95% con-
fidence intervals. The five-state HMMs showed the greatest 
departure between the 2D and 2D+ cases. In the 2D five-state 
HMM, there were no states clearly associated with increasing 
TRI values. However, in the five-state 2D+ HMM, the fourth 
state (in this model a moderate activity state) and its stationary 
probabilities were positively correlated with TRI values. When 
we modeled TRI as a function of Viterbi predicted states via 
an ANOVA model, we found that 2D+ HMMs were better 
fit as inferred by the AIC and adjusted R2 values (Table 3). 
Overall, the ANOVA HMM that explained the most varia-
tion in TRI was the 2D+ five-state HMM.

Table 2. Parameter estimates from the hidden Markov models of pumas Puma concolor tracked in the Santa Cruz Mountains of California, 
USA from July 2015 to August 2017. Models correspond to one of two cases: two-dimensional data (2D) and data accounting for vertical 
dimensionality (2D+), as well as differing numbers of fitted states (S). Statistics of fitted parameters that are shown are mean (μ), standard 
deviation (σ) and angular concentration (κ). Vertical turning angles were modeled with a fixed mean of 0 radians.

Model State Step length Hor. turning angle Ver. turning angle

2D, S = 2 1 μ = 16.17 σ = 13.48 μ = 3.13 κ = 0.67 –
2 μ = 95.97 σ = 59.93 μ = 0.00 κ = 1.19 –

2D+, S = 2 1 μ = 17.88 σ = 14.18 μ = 3.13 κ = 0.65 κ = 5.50
2 μ = 102.49 σ = 56.36 μ = 0.00 κ = 1.24 κ = 21.91

2D, S = 3 1 μ = 7.48 σ = 5.21 μ = 3.13 κ = 0.60 –
2 μ = 24.59 σ = 16.88 μ = 3.13 κ = 0.70 –
3 μ = 103.29 σ = 60.74 μ = 0.00 κ = 1.52 –

2D+, S = 3 1 μ = 8.49 σ = 5.54 μ = 3.14 κ = 0.64 κ = 7.46
2 μ = 27.07 σ = 16.59 μ = 3.13 κ = 0.62 κ = 4.64
3 μ = 109.27 σ = 56.22 μ = 0.00 κ = 1.45 κ = 28.14

2D, S = 4 1 μ = 5.31 σ = 3.57 μ = 3.14 κ = 0.56 –
2 μ = 14.35 σ = 8.73 μ = 3.13 κ = 0.68 –
3 μ = 37.00 σ = 24.95 μ = −3.13 κ = 0.58 –
4 μ = 109.59 σ = 61.54 μ = 0.00 κ = 1.94 –

2D+, S = 4 1 μ = 5.75 σ = 3.52 μ = −3.14 κ = 0.60 κ = 8.12
2 μ = 15.37 σ = 8.2 μ = 3.13 κ = 0.66 κ = 5.32
3 μ = 40.27 σ = 21.49 μ = −3.13 κ = 0.51 κ = 4.89
4 μ = 115.34 σ = 57.30 μ = 0.00 κ = 1.72 κ = 35.83

2D, S = 5 1 μ = 5.07 σ = 3.40 μ = 3.14 κ = 0.56 –
2 μ = 13.03 σ = 7.58 μ = 3.12 κ = 0.74 –
3 μ = 39.72 σ = 23.05 μ = 3.14 κ = 9.55 –
4 μ = 30.68 σ = 21.67 μ = −0.03 κ = 0.36 –
5 μ = 113.57 σ = 58.07 μ = 0.00 κ = 1.82 –

2D+, S = 5 1 μ = 7.52 σ = 4.53 μ = 3.10 κ = 0.465 κ = 3.80
2 μ = 115.69 σ = 56.68 μ = 0.00 κ = 1.76 κ = 22.17
3 μ = 11.46 σ = 7.68 μ = −3.12 κ = 0.76 κ = 76.89
4 μ = 27.81 σ = 15.24 μ = 3.13 κ = 0.69 κ = 4.09
5 μ = 50.10 σ = 28.85 μ = 3.13 κ = 0.23 κ = 292.71
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Discussion

In areas with high vertical dimensionality, terrestrial ani-
mals, such as pumas, contend with movement decisions with 
implications for energy expenditure, survival and reproduc-
tion (Birn-Jeffery and Higham 2014, Dunford et al. 2020). 
Thus, the complexity of the landscapes over which these 
movement decisions occur are fundamental to animal fit-
ness. Our hypothesis that integration of 2D+ HMMs would 

facilitate new biological interpretations of these movement 
decisions was supported. We found that 2D+ HMMs can 
result in state predictions that include dynamic behaviors 
such as climbing, descending and navigating complex land-
scapes that are otherwise obscured by 2D techniques. Via the 
integration of 2D+ movement into HMMs, we were able to 
predict behavioral states that more realistically describe puma 
climbing and descent actions that were missed by conven-
tional 2D HMMs.

Figure 4. Stationary state probabilities of hidden Markov models of puma Puma concolor movement in the Santa Cruz Mountains of 
California, USA from July 2015 to August 2017. Models correspond to one of two cases: two-dimensional data (2D) and data accounting 
for vertical dimensionality (2D+), as well as differing numbers of fitted states (S). State probabilities are plotted as a function of terrain rug-
gedness index (TRI), and vertical bars represent the 95% confidence intervals.
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There are a variety of scenarios in which the 2D+ meth-
ods we implemented here would provide valuable insights for 
practitioners. Pumas, for example, use a variety of strategies 
to navigate steep slopes, each with their own associated costs 
and benefits for energy expenditure (Dunford et al. 2020). 
Depending on the situation, pumas may choose to travel lon-
ger distances on flatter slopes rather than shorter distances 
on steeper slopes (Dunford et al. 2020). Steep movements 
can be more cost-effective in situations like ambushing 
prey, where energy is saved by avoiding a lengthy pursuit 
(Williams et al. 2014, Wang et al. 2015). Differentiating 
these diverse behaviors has previously been accomplished 
by using animal-borne accelerometers in combination with 
direct observation of animal research subjects in captivity. 
We found that using HMMs and 2D+ movement geometry, 
the same task can also be accomplished with GPS telemetry 
data. For instance, the 2D HMMs were not able to make 
the distinction between longer-distance movements across 
steep slopes and those along flatter surfaces (i.e. ridgelines) 
that the 2D+ HMMs could (Fig. 5). In the 2D+ five-state 
HMM, the state that captured most of the variation in verti-
cal dimensionality (i.e. the climbing state) had longer mean 
step lengths than the climbing state in the four-state HMM 
(Table 2). Typically, overlap of standard deviations between 

states in 2D HMMs indicates that fewer states are needed 
to retain biologically reasonable interpretations. In using a 
2D+ approach, we found that states with similar less distin-
guishable step lengths and horizontal turning angles may still 
be differentiated by vertical turning angles. Upon qualitative 
inspection, we confirmed that the 2D+ HMMs were captur-
ing entirely distinct behavioral states. For instance, the 2D+ 
four-state HMM differentiated longer movements on steeper 
slopes from those on ridgelines (Fig. 5). The 2D+ five-state 
HMM did not make this distinction. Instead, the climbing 
state was associated with shorter, more clustered movements 
in habitat with high vertical dimensionality. Furthermore, the 
five-state HMM greatly outperformed other HMMs in terms 
of its ability to predict TRI complexity (Table 3). Together, 
these results show that 2D+ HMMs could be used to isolate 
specific types of movement that are of interest to researchers.

Here, we have demonstrated the ability of 2D+ tech-
niques to enhance the biological interpretation of HMM 
outputs. The next step will be to quantify the corresponding 
variation in energetic outputs of animals moving over these 
complex landscapes. Pumas have been found to experience 
fine-scale energetic costs in movement, which subsequently 
has implications for their individual animal space use and 
population-level dynamics (Wang et al. 2017, Dunford et al. 

Table 3. Results of analysis of variance (ANOVA) models of predicted behavioral states as a function of landscape ruggedness index (TRI). 
States were obtained from a study of puma Puma concolor in the Santa Cruz Mountains of California, USA from July 2015 to August 2017. 
Models correspond to one of two cases: two-dimensional data (2D) and data accounting for vertical dimensionality (2D+), as well as differ-
ing numbers of fitted states (S). For each model, the first state corresponds to the intercept of the model by which other states are compared. 
Adjusted R2 and change in AIC values obtained for the entire model. Change in AIC is calculated from the model with the highest AIC (2D, 
S = 2).

Model State β estimate SE T statistic p-value Adj. R2 ΔAIC

2D+, S = 5 1 3.466 0.009 372.44 < 2e-16 0.2519 0
2 −0.540 0.015 −36.73 < 2e-16 – –
3 −1.576 0.013 −121.82 < 2e-16 – –
4 0.851 0.012 71.23 < 2e-16 – –
5 −1.311 0.018 −72.12 < 2e-16 – –

2D, S = 5 1 2.654 0.012 224.794 < 2e-16 0.0390 +36 734
2 0.681 0.014 48.56 < 2e-16 – –
3 1.142 0.019 59.72 < 2e-16 – –
4 0.852 0.017 50.070 < 2e-16 – –
5 0.082 0.017 4.698 2.62e-6 – –

2D+, S = 4 1 2.364 0.011 216.95 < 2e-16 0.0888 +28 913
2 1.009 0.013 77.20 < 2e-16 – –
3 1.598 0.015 108.07 < 2e-16 – –
4 0.272 0.017 16.41 < 2e-16 – –

2D, S = 4 1 2.672 0.011 234.78 < 2e-16 0.0409 +36 433
2 0.666 0.016 49.08 < 2e-16 – –
3 1.028 0.015 67.17 < 2e-16 – –
4 0.059 0.017 3.49 4.84e-4 – –

2D+, S = 3 1 2.649 0.008 333.71 < 2e-16 0.0849 +29 631
2 1.147 0.010 108.71 < 2e-16 – –
3 0.103 0.014 7.26 4.05e-13 – –

2D, S = 3 1 2.863 0.008 338.97 < 2e-16 0.0357 +37 063
2 0.718 0.011 65.50 < 2e-16 – –
3 −0.043 0.014 −2.987 0.002 – –

2D+, S = 2 1 3.288 0.006 595.52 < 2e-16 0.0076 +41 439
2 −0.427 0.013 −33.53 < 2e-16 – –

2D, S = 2 1 3.277 0.006 588.69 < 2e-16 0.0053 +41 777
2 −0.349 0.012 −28.01 < 2e-16 – –
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2020, Nickel et al. 2021). Studies using HMMs to investi-
gate animal activity and energy budgets would be improved 
by identifying behavioral states associated with climbing 
and descent movements. Furthermore, accurately describ-
ing animal movement in complex landscapes is increasingly 
important, as global climate change will necessitate some 
species to utilize montane areas to escape rising temperatures 
(Cahill et al. 2014). Anthropogenic sprawl and habitat loss 
may also push animals into more rugged areas humans can-
not as easily develop. Pumas in California, for instance, are 
predicted to experience a loss of approximately one third of 
existing habitat on private land by 2030 (Nielsen et al. 2015). 
If these habitat conversion trends continue, the energetic 
landscape may make it favorable for pumas to further adapt 
to more human-dominated landscapes, increasing depreda-
tion on domestic animals and negative human–wildlife inter-
actions (Shepard et al. 2013, Wang et al. 2017, Nickel et al. 
2021). Thus, the techniques that we describe herein could 
be very useful to predictive studies seeking to understand 
the implications of the various futures of animal ecology. 
Implementing the methods that we outline in this paper is 
also quite tractable. Fitting a 2D+ HMM requires only the 
calculation of 2D+ step and vertical turning angle, both of 
which can be calculated from existing 2D telemetry data with 
not more than a few lines of R code. We calculated our 2D+ 
movement data using straightforward trigonometry and ele-
vation values derived from DEMs, which are globally avail-
able at a variety of resolutions. The greatest limiting factors 
to fitting 2D+ HMMs are the availability of fine-scale GPS 
telemetry data and computational overhead of using more 
than two input data streams in movement models. However, 
these issues are readily being alleviated as telemetry systems 

have greater temporal resolutions and high-performance 
computing options are reducing convergence times.

In evaluating the capacity of 2D and 2D+ HMMs to accu-
rately identify behavioral states, we used a relatively simple 
application of a hidden Markov modeling approach. We 
have shown how these techniques can be effectively deployed 
to gain new insights into the movement ecology of pumas. 
However, these results can also be readily applied to other 
movement models, as well as to other species. The concep-
tual bias related to vertical dimensionality is not limited to 
HMMs, as other studies have shown that vertical dimension-
ality is influential in estimations of home range size, preda-
tory behavior, prey escape behavior and migration (Kie et al. 
2005, Stankowich and Coss 2007, Farhadinia et al. 2019, 
Heit et al. 2021), Furthermore, with respect to other spe-
cies, we are not just describing impacts on large mammals 
inhabiting complex landscapes. Rather, the effects of verti-
cal dimensionality can change with the spatial scale at which 
that complexity is mapped and also according the temporal 
scale or fix rate of movement data (Levin 1992, Fleming et al. 
2014). As coarser fix rates would aggregate animal behavior to 
a larger spatial extent, it would not make sense to then model 
behavior as a function of fine-scale spatial data. Thus, future 
studies may be able to provide guidance on matching spatial 
scale of landscape data to the temporal scale of movement 
locations. Our study provides the basis with which to further 
explore the incorporation of 2D+ data into HMMs, the most 
valuable of which would be to use simulated movement data 
in place of real telemetry locations to evaluate expected versus 
observed behavioral states.

Animals, and perhaps particularly those that reside in com-
plex landscapes, are expected to make movement decisions 

Figure 5. Outputs of the hidden Markov models of puma Puma concolor movement in the Santa Cruz Mountains of California, USA from 
July 2015 to August 2017. Puma locations are color coded by predicted state sequences from four and five state models using two different 
data types. Two-dimensional (2D) models used horizontal step length and turning angles derived from bivariate telemetry data, and 2D+ 
models incorporated vertical turning angles and changes in elevation.
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that maximize resource intake and minimize energy expendi-
ture (Pyke 1984, Hobbs 1989). The patterns that arise from 
these decisions are of key interest to a variety of fields of study. 
Via a quantitative analysis, 2D+ modeling can account for the 
increased distances incurred from vertical dimensionality and 
allows for differentiation between climbing and non-climbing 
movements. The effects of vertical dimensionality on HMMs 
depend on a variety of factors including number of fitted states, 
and likely vary with temporal resolution, and degree of verti-
cal dimensionality across a landscape. Importantly, 2D and 
2D+ methods were similar for small numbers of behavioral 
states, indicating that uses of HMMs for reasons other than 
understanding energetics are likely unaffected by 2D meth-
ods. However, our results provide an example for how verti-
cal dimensionality influences animal movement behavior and 
reveal exciting new avenues for understanding the dynamics 
of vertical dimensionality and animal movement in the future.
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